supplementary materials


bh2397 scheme

Acta Cryst. (2012). E68, m40    [ doi:10.1107/S1600536811052524 ]

Bis[[mu]3-N'-oxidopyridine-2-carboximidamidato(2-)]bis[[mu]2-N'-oxidopyridine-2-carboximidamidato(1-)]tetrapyridinetetranickel(II) dinitrate

X.-H. Deng and J.-W. Ran

Abstract top

The title compound, [Ni4(C6H5N3O)2(C6H6N3O)2(C5H5N)4](NO3)2, is a tetranuclear nickel complex containing a single-decker cation, located on an inversion center. The two unique NiII cations are N,N',N'',O-chelated by carboximidamidate(2-) and carboximidamidate(1-) anions, forming a distorted four-coordinate planar structure, while the other two NiII atoms are N,N',O,O'-chelated by the same bridging ligands and two pyridine molecules, affording six-coordinated metals in an octahedral geometry. The cation is isostructural with the complex crystallized with perchlorate counter-ions in place of nitrate.

Comment top

Transition metal compounds have been of great interest for many years. They are very important in the development of coordination chemistry. As an extension of work on the structural characterization of Ni compounds, we report here the crystal structure of a new tetranuclear nickel(II) compound.

The title compound is a tetranuclear nickel(II) complex (Fig. 1). The Ni(II) ions form a central deck, but show different coordinate ways. Two are coordinated by Npy, Nox, Nam and Oox (where the abbreviations py, ox and am are for the 2-pyridyl, oximate and deprotonated amino donor atoms, respectively), and form square planar geometry. The other two metals are coordinated by two solvent pyridine molecules and two chelating ligands, to form octahedral structures. The different coordinated-nickel(II) ions are bridged by the Oox groups. The Ni1—(N,O) bond lengths are longer than the Ni2—(N,O) bond distances. The angles are also different, as a consequence of the different coordination geometry. The cation is indeed isostructural with that found in the perchlorate complex previously reported (Kou et al., 2010). Related complexes have also been characterized (Papatriantafyllopoulou et al., 2008; Inglis et al., 2010; Deng & Ran, 2011).

Related literature top

For similar metal complexes, see: Kou et al. (2010); Papatriantafyllopoulou et al. (2008); Inglis et al. (2010); Deng & Ran (2011). For the synthesis of the ligand pyridine-2-amidoxine, see: Bernasek (1957).

Experimental top

The synthesis of pyridine-2-amidoxine was carried out according to literature (Bernasek, 1957). The title compound was synthesized by adding a solution of Ni(NO3)2.6H2O (290.8 mg, 1 mmol) in H2O (20 ml) to a solution of the ligand (137 mg, 1 mmol) and NaOH (80 mg, 2 mmol) in ethanol/water (3:1, 20 ml). The mixture was stirred at room temperature. The resulting precipitate was collected and dissolved in a mixture of ethanol and pyridine (3:1 v/v) at 50°C. The solution was allowed to stand in air for one day, and brown crystals were formed at the bottom of the vessel on slow evaporation of the solvent at room temperature. Yield: 56%. Anal. Calcd for C44H42N18Ni4O10: C 43.40, H 3.48, N 20.70. Found: C 43.36, H 3.53, N 20.94. IR (KBr, cm-1): ν = 3412 (w), 3268 (w), 1605 (s), 1552 (s), 1390 (very strong), 1347 (very strong), 1107 (m), 1450 (very strong), 705 (m).

Refinement top

H atoms were included in calculated positions with C—H = 0.93, N—H = 0.86 Å. For the terminal amine group N6, H atoms were refined freely, with restrained N—H bond lengths. Other H atoms were refined using a riding-model. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2 Ueq(C,N). Anisotropic displacement parameters for nitrate O atoms were restrained.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing displacement ellipsoids at the 50% probability level.
Bis[µ3-N'-oxidopyridine-2-carboximidamidato(2-)]bis[µ2-N'- oxidopyridine-2-carboximidamidato(1-)]tetrapyridinetetranickel(II) dinitrate top
Crystal data top
[Ni4(C6H5N3O)2(C6H6N3O)2(C5H5N)4](NO3)2Z = 1
Mr = 1217.80F(000) = 624
Triclinic, P1Dx = 1.651 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4356 (6) ÅCell parameters from 1738 reflections
b = 10.7190 (8) Åθ = 3.1–21.8°
c = 11.2908 (9) ŵ = 1.59 mm1
α = 92.041 (6)°T = 293 K
β = 98.240 (5)°Block, brown
γ = 100.870 (5)°0.40 × 0.38 × 0.35 mm
V = 1224.96 (15) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4286 independent reflections
Radiation source: fine-focus sealed tube3180 reflections with I > 2σ(I)
graphiteRint = 0.039
φ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.569, Tmax = 0.606k = 1211
9481 measured reflectionsl = 913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.042P)2 + 0.4034P]
where P = (Fo2 + 2Fc2)/3
4286 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.66 e Å3
8 restraintsΔρmin = 0.52 e Å3
0 constraints
Crystal data top
[Ni4(C6H5N3O)2(C6H6N3O)2(C5H5N)4](NO3)2γ = 100.870 (5)°
Mr = 1217.80V = 1224.96 (15) Å3
Triclinic, P1Z = 1
a = 10.4356 (6) ÅMo Kα radiation
b = 10.7190 (8) ŵ = 1.59 mm1
c = 11.2908 (9) ÅT = 293 K
α = 92.041 (6)°0.40 × 0.38 × 0.35 mm
β = 98.240 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4286 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3180 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.606Rint = 0.039
9481 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.66 e Å3
S = 1.03Δρmin = 0.52 e Å3
4286 reflectionsAbsolute structure: ?
349 parametersFlack parameter: ?
8 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.45373 (3)0.49188 (3)0.66926 (3)0.03132 (8)
Ni20.37394 (3)0.76610 (3)0.59280 (3)0.03324 (9)
N10.45234 (18)0.33873 (19)0.77743 (18)0.0346 (5)
N20.50204 (18)0.35800 (18)0.55758 (17)0.0323 (5)
N30.65769 (18)0.5669 (2)0.75316 (18)0.0364 (6)
N40.24626 (18)0.4257 (2)0.61209 (18)0.0371 (6)
N50.35016 (18)0.70397 (19)0.74148 (18)0.0340 (5)
N60.2507 (2)0.7224 (2)0.9124 (2)0.0510 (7)
H6B0.2906 (19)0.6662 (16)0.941 (2)0.061*
H6A0.235 (2)0.7699 (19)0.9683 (17)0.061*
N70.27188 (19)0.88369 (19)0.63555 (19)0.0384 (6)
N80.4142 (2)0.82419 (19)0.44897 (19)0.0419 (6)
H80.39730.89400.42130.050*
N90.2065 (2)0.9041 (2)0.1685 (2)0.0626 (7)
O10.40271 (16)0.60905 (16)0.79192 (15)0.0387 (5)
O20.45424 (15)0.63556 (15)0.55536 (14)0.0346 (4)
O30.2335 (2)0.9647 (2)0.2650 (2)0.0902 (8)
O40.1740 (3)0.7894 (3)0.1607 (3)0.1234 (12)
O50.2296 (4)0.9553 (3)0.0776 (2)0.1285 (11)
C10.4176 (3)0.3303 (3)0.8866 (2)0.0477 (8)
H10.39740.40170.92340.057*
C20.4105 (3)0.2203 (3)0.9472 (3)0.0562 (9)
H20.38530.21711.02290.067*
C30.4416 (3)0.1151 (3)0.8929 (3)0.0532 (9)
H30.43520.03900.93070.064*
C40.4823 (2)0.1235 (3)0.7816 (2)0.0410 (7)
H40.50670.05440.74470.049*
C50.4859 (2)0.2373 (2)0.7266 (2)0.0332 (7)
C60.5271 (2)0.2555 (2)0.6071 (2)0.0321 (6)
C70.7375 (2)0.4927 (3)0.8027 (3)0.0480 (8)
H70.71260.40510.78650.058*
C80.8551 (3)0.5403 (3)0.8767 (3)0.0612 (10)
H8A0.90770.48560.91010.073*
C90.8934 (3)0.6691 (3)0.9002 (3)0.0651 (11)
H90.97090.70330.95170.078*
C100.8154 (3)0.7466 (3)0.8465 (3)0.0587 (10)
H100.84050.83470.85850.070*
C110.6988 (2)0.6920 (3)0.7743 (3)0.0445 (8)
H110.64610.74550.73850.053*
C120.1604 (2)0.4086 (3)0.6893 (3)0.0497 (8)
H120.19190.42910.77030.060*
C130.0283 (3)0.3623 (3)0.6558 (3)0.0654 (10)
H130.02830.35130.71280.079*
C140.0189 (3)0.3328 (3)0.5370 (4)0.0708 (11)
H140.10840.30140.51140.085*
C150.0670 (3)0.3500 (3)0.4571 (3)0.0664 (10)
H150.03710.33090.37570.080*
C160.1994 (3)0.3960 (3)0.4975 (3)0.0503 (8)
H160.25770.40650.44190.060*
C170.2787 (2)0.7604 (2)0.8038 (2)0.0374 (7)
C180.2286 (2)0.8621 (2)0.7436 (2)0.0368 (7)
C190.1439 (2)0.9336 (3)0.7852 (3)0.0529 (9)
H190.11370.91750.85770.063*
C200.1053 (3)1.0286 (3)0.7175 (3)0.0617 (10)
H200.04981.07800.74460.074*
C210.1495 (3)1.0495 (3)0.6102 (3)0.0585 (9)
H210.12391.11320.56390.070*
C220.2319 (3)0.9763 (3)0.5708 (3)0.0488 (8)
H220.26080.99110.49750.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03287 (15)0.03169 (17)0.03126 (17)0.01043 (13)0.00592 (13)0.00101 (13)
Ni20.03572 (15)0.03221 (17)0.03383 (17)0.01353 (13)0.00404 (14)0.00190 (14)
N10.0353 (10)0.0386 (12)0.0312 (11)0.0102 (9)0.0055 (9)0.0022 (9)
N20.0389 (10)0.0305 (11)0.0292 (11)0.0082 (9)0.0091 (9)0.0017 (9)
N30.0362 (10)0.0368 (11)0.0378 (12)0.0088 (9)0.0088 (9)0.0010 (10)
N40.0353 (10)0.0417 (12)0.0359 (11)0.0088 (9)0.0094 (9)0.0008 (10)
N50.0349 (10)0.0352 (11)0.0342 (11)0.0131 (9)0.0061 (9)0.0035 (9)
N60.0580 (12)0.0633 (15)0.0413 (13)0.0282 (11)0.0185 (11)0.0009 (12)
N70.0382 (10)0.0358 (11)0.0401 (12)0.0112 (9)0.0011 (10)0.0057 (10)
N80.0565 (12)0.0310 (11)0.0451 (13)0.0210 (10)0.0133 (10)0.0057 (10)
N90.0837 (15)0.0704 (16)0.0504 (15)0.0439 (13)0.0246 (13)0.0175 (13)
O10.0458 (9)0.0395 (10)0.0345 (9)0.0176 (8)0.0066 (8)0.0013 (8)
O20.0448 (8)0.0347 (9)0.0299 (9)0.0180 (7)0.0107 (7)0.0037 (7)
O30.1267 (16)0.1144 (18)0.0461 (13)0.0744 (14)0.0053 (13)0.0103 (13)
O40.151 (2)0.079 (2)0.138 (3)0.0138 (19)0.064 (2)0.0039 (19)
O50.243 (3)0.0930 (18)0.0743 (17)0.0774 (19)0.044 (2)0.0252 (15)
C10.0498 (14)0.0572 (18)0.0381 (15)0.0145 (13)0.0081 (13)0.0043 (14)
C20.0515 (15)0.085 (2)0.0355 (15)0.0151 (16)0.0099 (13)0.0193 (15)
C30.0510 (15)0.0552 (18)0.0529 (17)0.0102 (14)0.0022 (14)0.0224 (14)
C40.0394 (13)0.0388 (15)0.0435 (15)0.0086 (12)0.0005 (12)0.0071 (12)
C50.0303 (11)0.0332 (13)0.0347 (14)0.0042 (10)0.0028 (11)0.0020 (11)
C60.0332 (11)0.0274 (13)0.0346 (13)0.0061 (10)0.0017 (11)0.0005 (11)
C70.0384 (13)0.0400 (15)0.0642 (19)0.0097 (12)0.0004 (14)0.0037 (14)
C80.0447 (15)0.0564 (18)0.078 (2)0.0122 (14)0.0111 (16)0.0107 (17)
C90.0421 (15)0.068 (2)0.074 (2)0.0004 (16)0.0103 (16)0.0087 (18)
C100.0466 (15)0.0435 (17)0.081 (2)0.0018 (14)0.0066 (16)0.0128 (16)
C110.0408 (13)0.0436 (15)0.0519 (17)0.0136 (12)0.0096 (13)0.0020 (13)
C120.0398 (13)0.0613 (18)0.0474 (17)0.0088 (13)0.0082 (13)0.0031 (15)
C130.0443 (15)0.060 (2)0.096 (3)0.0107 (14)0.0270 (16)0.0007 (19)
C140.0370 (14)0.0539 (19)0.115 (3)0.0073 (14)0.0030 (17)0.021 (2)
C150.0554 (17)0.069 (2)0.066 (2)0.0117 (16)0.0144 (16)0.0184 (18)
C160.0502 (15)0.0569 (18)0.0431 (16)0.0117 (14)0.0049 (13)0.0024 (14)
C170.0351 (12)0.0359 (14)0.0399 (15)0.0069 (11)0.0032 (11)0.0039 (12)
C180.0296 (11)0.0358 (14)0.0429 (15)0.0048 (11)0.0025 (11)0.0080 (12)
C190.0429 (13)0.0549 (17)0.066 (2)0.0190 (13)0.0163 (14)0.0062 (15)
C200.0542 (15)0.0575 (18)0.083 (2)0.0327 (14)0.0162 (16)0.0032 (17)
C210.0596 (15)0.0522 (17)0.070 (2)0.0339 (13)0.0009 (16)0.0024 (16)
C220.0548 (15)0.0467 (16)0.0481 (17)0.0232 (13)0.0015 (14)0.0013 (14)
Geometric parameters (Å, °) top
Ni1—O12.0295 (17)C2—H20.9300
Ni1—O22.0410 (17)C3—C41.383 (4)
Ni1—N22.057 (2)C3—H30.9300
Ni1—N12.080 (2)C4—C51.386 (4)
Ni1—N42.1435 (19)C4—H40.9300
Ni1—N32.1900 (18)C5—C61.481 (3)
Ni2—O21.8278 (17)C6—N8i1.333 (3)
Ni2—N81.836 (2)C7—C81.381 (4)
Ni2—N51.860 (2)C7—H70.9300
Ni2—N71.888 (2)C8—C91.368 (4)
N1—C11.335 (3)C8—H8A0.9300
N1—C51.339 (3)C9—C101.367 (4)
N2—C61.303 (3)C9—H90.9300
N2—O2i1.414 (3)C10—C111.378 (4)
N3—C111.331 (3)C10—H100.9300
N3—C71.336 (3)C11—H110.9300
N4—C161.321 (3)C12—C131.367 (4)
N4—C121.330 (3)C12—H120.9300
N5—C171.306 (3)C13—C141.366 (5)
N5—O11.350 (3)C13—H130.9300
N6—C171.360 (3)C14—C151.354 (5)
N6—H6B0.843 (15)C14—H140.9300
N6—H6A0.851 (16)C15—C161.380 (4)
N7—C221.347 (3)C15—H150.9300
N7—C181.373 (3)C16—H160.9300
N8—C6i1.333 (3)C17—C181.446 (4)
N8—H80.8600C18—C191.391 (4)
N9—O41.209 (4)C19—C201.381 (4)
N9—O51.214 (4)C19—H190.9300
N9—O31.217 (3)C20—C211.368 (5)
O2—N2i1.414 (3)C20—H200.9300
C1—C21.380 (4)C21—C221.376 (4)
C1—H10.9300C21—H210.9300
C2—C31.378 (4)C22—H220.9300
O1—Ni1—O287.43 (7)C2—C3—H3120.2
O1—Ni1—N2173.84 (8)C4—C3—H3120.2
O2—Ni1—N298.68 (7)C3—C4—C5118.3 (3)
O1—Ni1—N195.46 (8)C3—C4—H4120.8
O2—Ni1—N1176.94 (7)C5—C4—H4120.8
N2—Ni1—N178.42 (8)N1—C5—C4122.4 (2)
O1—Ni1—N486.65 (7)N1—C5—C6115.2 (2)
O2—Ni1—N490.52 (7)C4—C5—C6122.4 (2)
N2—Ni1—N492.45 (8)N2—C6—N8i120.5 (2)
N1—Ni1—N488.65 (8)N2—C6—C5115.1 (2)
O1—Ni1—N385.71 (7)N8i—C6—C5124.5 (2)
O2—Ni1—N392.71 (7)N3—C7—C8123.0 (3)
N2—Ni1—N394.77 (8)N3—C7—H7118.5
N1—Ni1—N388.52 (7)C8—C7—H7118.5
N4—Ni1—N3171.56 (8)C9—C8—C7119.1 (3)
O2—Ni2—N884.38 (8)C9—C8—H8A120.5
O2—Ni2—N591.50 (8)C7—C8—H8A120.5
N8—Ni2—N5174.27 (9)C10—C9—C8118.7 (3)
O2—Ni2—N7172.23 (8)C10—C9—H9120.7
N8—Ni2—N7100.57 (9)C8—C9—H9120.7
N5—Ni2—N783.96 (9)C9—C10—C11118.9 (3)
C1—N1—C5118.4 (2)C9—C10—H10120.6
C1—N1—Ni1127.43 (19)C11—C10—H10120.6
C5—N1—Ni1114.07 (16)N3—C11—C10123.4 (3)
C6—N2—O2i109.62 (19)N3—C11—H11118.3
C6—N2—Ni1115.76 (16)C10—C11—H11118.3
O2i—N2—Ni1132.58 (14)N4—C12—C13123.4 (3)
C11—N3—C7116.9 (2)N4—C12—H12118.3
C11—N3—Ni1119.41 (17)C13—C12—H12118.3
C7—N3—Ni1122.75 (16)C14—C13—C12118.7 (3)
C16—N4—C12117.3 (2)C14—C13—H13120.7
C16—N4—Ni1120.50 (18)C12—C13—H13120.7
C12—N4—Ni1122.16 (16)C15—C14—C13118.7 (3)
C17—N5—O1117.4 (2)C15—C14—H14120.7
C17—N5—Ni2116.46 (18)C13—C14—H14120.7
O1—N5—Ni2126.15 (15)C14—C15—C16119.5 (3)
C17—N6—H6B115.2 (18)C14—C15—H15120.2
C17—N6—H6A125.6 (16)C16—C15—H15120.2
H6B—N6—H6A111 (2)N4—C16—C15122.4 (3)
C22—N7—C18118.8 (2)N4—C16—H16118.8
C22—N7—Ni2128.23 (19)C15—C16—H16118.8
C18—N7—Ni2112.85 (17)N5—C17—N6122.5 (2)
C6i—N8—Ni2111.45 (17)N5—C17—C18113.5 (2)
C6i—N8—H8124.3N6—C17—C18123.9 (2)
Ni2—N8—H8124.3N7—C18—C19120.8 (3)
O4—N9—O5116.9 (3)N7—C18—C17113.1 (2)
O4—N9—O3121.9 (3)C19—C18—C17126.1 (3)
O5—N9—O3120.3 (3)C20—C19—C18119.3 (3)
N5—O1—Ni1112.62 (13)C20—C19—H19120.4
N2i—O2—Ni2114.03 (13)C18—C19—H19120.4
N2i—O2—Ni1127.93 (13)C21—C20—C19119.4 (3)
Ni2—O2—Ni1117.72 (8)C21—C20—H20120.3
N1—C1—C2122.7 (3)C19—C20—H20120.3
N1—C1—H1118.6C20—C21—C22120.0 (3)
C2—C1—H1118.6C20—C21—H21120.0
C3—C2—C1118.5 (3)C22—C21—H21120.0
C3—C2—H2120.8N7—C22—C21121.8 (3)
C1—C2—H2120.8N7—C22—H22119.1
C2—C3—C4119.5 (3)C21—C22—H22119.1
Symmetry codes: (i) −x+1, −y+1, −z+1.
Acknowledgements top

The research was supported by the Natural Science Fund of Hubei Province (project ZRZ0140) and the National Natural Science Foundation of China (Nos. 20877013 and 20837001). The authors thank Professor Z.-M. Qiu of Hubei Academy of Agricultural Science for his valuable suggestions.

references
References top

Bernasek, E. (1957). J. Org. Chem. 22, 1263–1263.

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Deng, X.-H. & Ran, J.-W. (2011). Acta Cryst. E67, m1323–m1324.

Inglis, R., Stoumpos, C. C., Prescimone, A., Siczek, M., Lis, T., Wernsdorfer, W., Brechin, E. K. & Milios, C. J. (2010). Dalton Trans. 39, 4777–4785.

Kou, H.-Z., An, G.-Y., Ji, C.-M., Wang, B.-W. & Cui, A.-L. (2010). Dalton Trans. 39, 9604–9610.

Papatriantafyllopoulou, C., Jones, L. F., Nguyen, T. D., Matamoros-Salvador, N., Cunha-Silva, L., Almeida Paz, F. A., Rocha, J., Evangelisti, M., Brechin, E. K. & Perlepes, S. P. (2008). Dalton Trans. pp. 3153–3155.

Sheldrick, G. M. (2008). Acta Cryst. (2008). A64, 112–122.