supplementary materials


bh2400 scheme

Acta Cryst. (2012). E68, o71    [ doi:10.1107/S1600536811052640 ]

N-[2-(4-Bromobenzoyl)ethyl]isopropylaminium chloride

A. Aydin, M. Akkurt, H. I. Gul, E. Mete and E. Sahin

Abstract top

The crystal structure of the title compound, C12H17BrNO+·Cl-, is stabilized by N-H...Cl and C-H...O hydrogen bonds, forming a three-dimensional network. The interactions framework is completed by C-H...[pi] contacts between a methylene group and the benzene ring of a symmetry-related molecule.

Comment top

Mannich bases are generally formed by the reaction between formaldehyde, a secondary amine and a compound containing reactive hydrogen atoms. On occasion, aldehydes other than formaldehyde may be employed and the secondary amine may be replaced by ammonia and primary amines. This process is known as the Mannich reaction (Dimmock & Kumar, 1997).

Mannich bases display varied biological activities such as antimicrobial (Gul, Sahin, et al., 2005), cytotoxic (Gul, Gul et al., 2005; Gul et al., 2007; Mete et al., 2011; Kucukoglu et al., 2011), anticancer (Dimmock & Kumar, 1997; Chen et al., 1991), anti-inflammatory (Suleyman et al., 2007), and DNA topoisomerase I inhibiting properties (Canturk et al., 2008).

A Mannich base having at least one hydrogen atom at the β position of amine group can undergo a deamination process to generate an α,β-unsaturated ketone moiety.

In the molecule of the tile compound (Fig. 1), the bond lengths are within normal ranges (Allen et al., 1987), as well as bond angles.

In the crystal structure, molecules are linked via intermolecular N—H···Cl and C—H···O hydrogen bonds (Table 1, Fig. 2), forming a three dimensional network. Furthermore, a C—H···π interaction (Table 1) contributes to the stabilization of the crystal packing.

Related literature top

For details of the pharmacological effects of Mannich bases and for the synthesis, see: Dimmock & Kumar (1997); Gul, Gul, et al. (2005); Gul, Sahin et al. (2005); Gul et al. (2007); Mete et al. (2011); Kucukoglu et al. (2011); Canturk et al. (2008); Chen et al. (1991); Suleyman et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of the appropriate ketone (50 mmol), para-formaldehyde (50 mmol), and iso-propylamine hydrochloride (27 mmol) was heated in an oil bath at 403 K. The reaction vessel was then removed from the oil bath and when the temperature of the mixture dropped to 338 K, ethyl acetate (40–80 ml) was added. The mixture was stirred at room temperature for 24 h. and the resulting precipitates were then collected and the Mannich base (I) was passed through a column of silica gel 60 (70–230 mesh) using methanol as eluent. After evaporation of the solvent, the product was recrystallized from methanol. M.p.: 447–449 K. Yield: 38%. 1H-NMR (CDCl3) δ 1.49 (d, J = 6.8 Hz, 6H, CH(CH3)2), 3.34–3.38 (m, 3H, CH(CH3)2 and 2 x H-2), 3.73 (t, J = 7.3 Hz, 2H, 2 x H-3), 7.50 (d, J = 8.4 Hz, 2H, H-3'/5'), 7.76 (d, 2H, J = 8.4 Hz, H-2'/6'), 9.55 (brs, 2H, NH2+). 13C-NMR (CDCl3) δ 19.4 (CH(CH3)2), 35.3, 40.2, 51.3, 129.4, 129.8, 132.3, 134.7, 195.8 (CO); MS (EI) m/z: 254 (M - CH3)+, 256 (M - CH3 + 2)+, 270.2 (M + H)+, 272.2 (M + H + 2)+. IR (KBr, cm-1): 2462 (NH2+), 1684 (CO). Calcd. for C12H17BrClNO (306.63): C 47.00, H 5.59, N 4.57. Found: C 46.74, H 5.52, N 4.59 (Mete et al., 2011).

Refinement top

The H atoms of the NH2 group, HN1 and HN2, were located in a difference map and refined with a distance restraint of N—H = 0.86 (1) Å. Their displacement parameters were calculated as Uiso = 1.2Ueq(N1). The other H atoms were positioned geometrically with C—H = 0.93 (aromatic), 0.96 (methyl), 0.97 (methylene) and 0.98 Å (methine), and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids for non-H atoms shown at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title salt viewed down the c axis. H atoms not involved in hydrogen bonds are omitted for the sake of clarity.
N-[2-(4-Bromobenzoyl)ethyl]isopropylaminium chloride top
Crystal data top
C12H17BrNO+·ClDx = 1.461 Mg m3
Mr = 306.62Melting point: 447 K
Tetragonal, P42/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 4bcCell parameters from 3888 reflections
a = 19.7122 (4) Åθ = 2.9–26.4°
c = 7.1738 (2) ŵ = 3.12 mm1
V = 2787.53 (11) Å3T = 294 K
Z = 8Block, white
F(000) = 12480.15 × 0.13 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
2836 independent reflections
Radiation source: Sealed Tube1617 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.151
Detector resolution: 10.0000 pixels mm-1θmax = 26.4°, θmin = 2.9°
dtprofit.ref scansh = 2424
Absorption correction: multi-scan
(Blessing, 1995)
k = 2424
Tmin = 0.632, Tmax = 0.709l = 88
50060 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0581P)2 + 4.3122P]
where P = (Fo2 + 2Fc2)/3
2836 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.67 e Å3
2 restraintsΔρmin = 0.81 e Å3
0 constraints
Crystal data top
C12H17BrNO+·ClZ = 8
Mr = 306.62Mo Kα radiation
Tetragonal, P42/nµ = 3.12 mm1
a = 19.7122 (4) ÅT = 294 K
c = 7.1738 (2) Å0.15 × 0.13 × 0.11 mm
V = 2787.53 (11) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
2836 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1617 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.709Rint = 0.151
50060 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.076H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.181Δρmax = 0.67 e Å3
S = 1.07Δρmin = 0.81 e Å3
2836 reflectionsAbsolute structure: ?
153 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.66757 (4)0.19433 (5)0.04514 (15)0.1156 (4)
O10.5235 (2)0.0463 (2)0.7192 (7)0.0850 (17)
N10.6128 (2)0.1377 (2)0.8767 (7)0.0540 (17)
C10.6340 (3)0.0359 (3)0.3195 (9)0.065 (2)
C20.6561 (3)0.0740 (3)0.1698 (10)0.073 (3)
C30.6384 (3)0.1411 (3)0.1604 (10)0.069 (2)
C40.5995 (3)0.1707 (3)0.2962 (10)0.074 (3)
C50.5762 (3)0.1323 (3)0.4438 (9)0.067 (2)
C60.5940 (3)0.0644 (3)0.4585 (8)0.057 (2)
C70.5686 (3)0.0245 (3)0.6205 (9)0.061 (2)
C80.5994 (3)0.0435 (3)0.6592 (8)0.063 (2)
C90.5742 (3)0.0744 (3)0.8392 (9)0.061 (2)
C100.5984 (3)0.1725 (3)1.0610 (8)0.0583 (19)
C110.6462 (3)0.2324 (3)1.0768 (9)0.070 (2)
C120.5251 (3)0.1928 (3)1.0763 (8)0.069 (2)
Cl10.75617 (8)0.07602 (8)0.9322 (2)0.0682 (6)
H10.646100.009600.327500.0780*
HN10.604 (4)0.168 (3)0.794 (9)0.1390*
HN20.6548 (13)0.126 (4)0.877 (12)0.1390*
H20.682500.054400.076900.0870*
H40.588900.216600.289000.0890*
H50.548400.152000.533600.0800*
H8A0.648300.038800.665200.0760*
H8B0.588800.073900.556900.0760*
H9A0.580500.042700.941000.0730*
H9B0.526100.084600.829200.0730*
H100.608700.140601.162000.0700*
H11A0.635500.265000.981900.1050*
H11B0.641200.252901.197300.1050*
H11C0.692100.217101.061200.1050*
H12A0.513200.221200.972600.1030*
H12B0.497100.153001.075800.1030*
H12C0.518200.217301.190400.1030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0916 (6)0.1139 (7)0.1414 (9)0.0018 (4)0.0247 (5)0.0597 (6)
O10.091 (3)0.074 (3)0.090 (3)0.020 (2)0.021 (3)0.008 (3)
N10.055 (3)0.049 (3)0.058 (3)0.002 (2)0.001 (2)0.007 (2)
C10.061 (4)0.055 (4)0.080 (4)0.009 (3)0.003 (3)0.007 (3)
C20.067 (4)0.067 (4)0.084 (5)0.003 (3)0.006 (3)0.011 (4)
C30.049 (3)0.070 (4)0.087 (5)0.006 (3)0.004 (3)0.023 (4)
C40.075 (4)0.056 (4)0.090 (5)0.002 (3)0.008 (4)0.013 (4)
C50.072 (4)0.051 (3)0.077 (4)0.005 (3)0.003 (3)0.000 (3)
C60.062 (4)0.050 (3)0.060 (4)0.002 (3)0.010 (3)0.004 (3)
C70.056 (4)0.060 (4)0.068 (4)0.000 (3)0.004 (3)0.001 (3)
C80.064 (4)0.061 (4)0.065 (4)0.006 (3)0.001 (3)0.009 (3)
C90.060 (4)0.053 (3)0.070 (4)0.003 (3)0.003 (3)0.005 (3)
C100.068 (4)0.056 (3)0.051 (3)0.003 (3)0.004 (3)0.005 (3)
C110.070 (4)0.072 (4)0.067 (4)0.009 (3)0.008 (3)0.013 (3)
C120.067 (4)0.075 (4)0.064 (4)0.004 (3)0.008 (3)0.006 (3)
Cl10.0608 (9)0.0857 (11)0.0580 (9)0.0135 (7)0.0045 (7)0.0045 (8)
Geometric parameters (Å, °) top
Br1—C31.899 (7)C10—C111.515 (8)
O1—C71.215 (7)C1—H10.9300
N1—C91.486 (7)C2—H20.9300
N1—C101.516 (8)C4—H40.9300
N1—HN20.86 (4)C5—H50.9300
N1—HN10.86 (6)C8—H8A0.9700
C1—C21.381 (9)C8—H8B0.9700
C1—C61.390 (9)C9—H9A0.9700
C2—C31.370 (8)C9—H9B0.9700
C3—C41.370 (9)C10—H100.9800
C4—C51.380 (9)C11—H11A0.9600
C5—C61.388 (8)C11—H11B0.9600
C6—C71.490 (9)C11—H11C0.9600
C7—C81.498 (8)C12—H12A0.9600
C8—C91.512 (9)C12—H12B0.9600
C10—C121.503 (8)C12—H12C0.9600
C9—N1—C10116.2 (4)C5—C4—H4120.00
HN2—N1—HN1113 (8)C4—C5—H5120.00
C9—N1—HN1111 (5)C6—C5—H5120.00
C10—N1—HN2107 (6)C7—C8—H8A109.00
C9—N1—HN2106 (5)C7—C8—H8B109.00
C10—N1—HN1105 (4)C9—C8—H8A109.00
C2—C1—C6121.1 (6)C9—C8—H8B109.00
C1—C2—C3118.9 (6)H8A—C8—H8B108.00
Br1—C3—C2119.7 (5)N1—C9—H9A110.00
Br1—C3—C4119.1 (5)N1—C9—H9B110.00
C2—C3—C4121.3 (6)C8—C9—H9A110.00
C3—C4—C5119.9 (6)C8—C9—H9B110.00
C4—C5—C6120.2 (6)H9A—C9—H9B108.00
C5—C6—C7118.9 (5)N1—C10—H10108.00
C1—C6—C7122.5 (5)C11—C10—H10108.00
C1—C6—C5118.6 (5)C12—C10—H10108.00
O1—C7—C6120.9 (5)C10—C11—H11A109.00
C6—C7—C8118.7 (5)C10—C11—H11B109.00
O1—C7—C8120.3 (6)C10—C11—H11C109.00
C7—C8—C9112.7 (5)H11A—C11—H11B110.00
N1—C9—C8109.0 (5)H11A—C11—H11C110.00
N1—C10—C12111.4 (5)H11B—C11—H11C110.00
C11—C10—C12112.6 (5)C10—C12—H12A109.00
N1—C10—C11107.5 (5)C10—C12—H12B110.00
C2—C1—H1119.00C10—C12—H12C109.00
C6—C1—H1119.00H12A—C12—H12B109.00
C1—C2—H2121.00H12A—C12—H12C109.00
C3—C2—H2121.00H12B—C12—H12C109.00
C3—C4—H4120.00
C9—N1—C10—C11176.0 (5)C3—C4—C5—C62.3 (9)
C9—N1—C10—C1260.1 (6)C4—C5—C6—C11.7 (9)
C10—N1—C9—C8174.9 (4)C4—C5—C6—C7179.4 (6)
C6—C1—C2—C30.5 (9)C5—C6—C7—C8166.9 (5)
C2—C1—C6—C50.3 (9)C1—C6—C7—O1165.4 (6)
C2—C1—C6—C7179.2 (6)C1—C6—C7—C814.2 (9)
C1—C2—C3—C40.1 (10)C5—C6—C7—O113.5 (9)
C1—C2—C3—Br1179.5 (5)O1—C7—C8—C96.8 (8)
C2—C3—C4—C51.4 (10)C6—C7—C8—C9173.6 (5)
Br1—C3—C4—C5178.1 (5)C7—C8—C9—N1173.8 (5)
Hydrogen-bond geometry (Å, °) top
Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—HN2···Cl10.86 (4)2.26 (4)3.102 (4)166 (5)
N1—HN1···Cl1i0.86 (6)2.27 (6)3.133 (5)177 (9)
C12—H12B···O1ii0.962.603.378 (7)139
C9—H9B···Cg1iii0.973.003.943 (6)164
Symmetry codes: (i) −y+1/2, x−1, −z+3/2; (ii) −x+1, −y, −z+2; (iii) −x+1, −y, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—HN2···Cl10.86 (4)2.26 (4)3.102 (4)166 (5)
N1—HN1···Cl1i0.86 (6)2.27 (6)3.133 (5)177 (9)
C12—H12B···O1ii0.962.603.378 (7)139
C9—H9B···Cg1iii0.973.003.943 (6)164
Symmetry codes: (i) −y+1/2, x−1, −z+3/2; (ii) −x+1, −y, −z+2; (iii) −x+1, −y, −z+1.
Acknowledgements top

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Canturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forsch. 58, 686–691.

Chen, H. T., Jing, Y. K., Ji, Z. Z. & Zhang, B. F. (1991). Yaoxue Xuebao, 26, 183–192.

Dimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1–22.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Gul, M., Gul, H. I., Das, U. & Hanninen, O. (2005). Arzneim. Forsch. 55, 332–337.

Gul, H. I., Sahin, F., Gul, M., Ozturk, S. & Yerdelen, K. O. (2005). Arch. Pharm. 338, 335–338.

Gul, H. I., Yerdelen, K. O., Gul, M., Das, U., Pandit, B., Li, P.-K., Secen, H. & Sahin, F. (2007). Arch. Pharm. 340, 195–201.

Kucukoglu, K., Gul, M., Atalay, M., Mete, E., Kazaz, C., Hanninen, O. & Gul, H. I. (2011). Arzneim. Forsch. 61, 366–371.

Mete, E., Gul, H. I., Cetin-Atalay, R., Das, U., Sahin, E., Gul, M., Kazaz, C. & Dimmock, J. R. (2011). Arch. Pharm. Chem. Life Sci. 11, 333–339.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Suleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63–67.