supplementary materials


bh2402 scheme

Acta Cryst. (2012). E68, m43    [ doi:10.1107/S1600536811050999 ]

Tetrakis([mu]-4-azidobenzoato-[kappa]2O:O')bis[(N,N-dimethylformamide-[kappa]O)copper(II)]

A. Wang

Abstract top

The binuclear title compound, [Cu2(C7H4N3O2)4(C3H7NO)2], is a discrete metal-organic compound having a paddle-wheel-type structure. The Cu...Cu distance is 2.6366 (5) Å and an inversion center is located at the mid-point of this bond. The CuII cation is coordinated by four carboxylate O atoms from four 4-azidobenzoate ligands, and one O atom from a dimethylformamide molecule, forming an overall distorted octahedral geometry when the Cu...Cu bond is also considered.

Comment top

The title compound, tetrakis(4-azidobenzoato)bis[(N,N-dimethylformamide)copper(II)], crystallizes in the monoclinic form with centrosymmetric space group P21/c. The asymmetric unit contains one copper atom, two 4-azidobenzoate ligands, and one DMF molecule. The Cu atom has a coordination number of six and is coordinated by four carboxylate O atoms from four 4-azidobenzoate ligands and one O atom from DMF molecule. The Cu—Cu bond length is 2.6366 (5) Å. The main structural feature of the title compound is the presence of the well known paddle-wheel unit (Del Sesto et al., 2000; Li et al., 2011) constructed by the asymmetric unit via the inversion symmetry. The azido groups of the ligands are not coordinated and the axial positions of the octahedral coordination polyhedra are occupied by two DMF molecules, to generate the 0D compound.

Related literature top

For similar complexes displaying a paddle-wheel structure, see: Del Sesto et al. (2000); Li et al. (2011). For the synthesis of 4-azidobenzoic acid, see: Sato et al. (2010).

Experimental top

4-Azidobenzoic acid was prepared from 4-aminoisophthalic acid by diazotization followed by azidation with sodium azide (Sato et al., 2010). A mixture of Cu(NO3)2 3 H2O (0.130 g, 0.5 mmol) 4-azidobenzoic acid (0.085 g,0.5 mmol) and DMF (5 ml) was sealed in a 20 ml stainless steel reactor with Teflon liner and heated at 393 K for 4 days. Blue crystals of the title complex were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically. C—H bonds lengths were fixed at 0.93 Å for aromatic CH groups and 0.96 Å for methyl groups, and H atoms were allowed to ride on their parent atoms. Isotropic displacement parameters were calculated as Uiso(H)=1.2Ueq(carrier C) for aromatic CH and Uiso(H)=1.5Ueq(carrier C) for methyl groups.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecular drawing of the title complex, showing 30% probability displacement ellipsoids. All H atoms were omitted for clarity. Unlabeled atoms are generated by symmetry -x, 1-y, 1-z.
Tetrakis(µ-4-azidobenzoato-κ2O:O')bis[(N,N- dimethylformamide-κO)copper(II)] top
Crystal data top
[Cu2(C7H4N3O2)4(C3H7NO)2]F(000) = 940
Mr = 921.80Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4783 reflections
a = 11.9209 (8) Åθ = 3.1–25°
b = 17.9387 (10) ŵ = 1.14 mm1
c = 9.3680 (5) ÅT = 293 K
β = 91.277 (5)°Block, blue
V = 2002.8 (2) Å30.2 × 0.2 × 0.2 mm
Z = 2
Data collection top
Rigaku Mercury70
diffractometer
3496 independent reflections
Radiation source: fine-focus sealed tube3141 reflections with I > 2σ(I)
graphiteRint = 0.031
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1921
Tmin = 0.805, Tmax = 0.805l = 1111
12312 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.7327P]
where P = (Fo2 + 2Fc2)/3
3496 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
0 constraints
Crystal data top
[Cu2(C7H4N3O2)4(C3H7NO)2]V = 2002.8 (2) Å3
Mr = 921.80Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.9209 (8) ŵ = 1.14 mm1
b = 17.9387 (10) ÅT = 293 K
c = 9.3680 (5) Å0.2 × 0.2 × 0.2 mm
β = 91.277 (5)°
Data collection top
Rigaku Mercury70
diffractometer
3496 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
3141 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.805Rint = 0.031
12312 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.33 e Å3
S = 1.02Δρmin = 0.31 e Å3
3496 reflectionsAbsolute structure: ?
271 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.05068 (2)0.451211 (14)0.58459 (3)0.03461 (12)
O10.16267 (14)0.44589 (9)0.43570 (18)0.0472 (4)
O50.12483 (14)0.36844 (9)0.72800 (17)0.0470 (4)
O30.04281 (13)0.62087 (9)0.52445 (18)0.0461 (4)
O20.07599 (14)0.52740 (10)0.28944 (17)0.0467 (4)
O40.12931 (15)0.53807 (9)0.66805 (19)0.0497 (4)
N70.1214 (2)0.31119 (12)0.9451 (2)0.0567 (6)
N10.4690 (2)0.4056 (2)0.1016 (3)0.0854 (9)
N20.4467 (3)0.4246 (2)0.2269 (4)0.1045 (11)
N60.4782 (4)0.8193 (3)1.0817 (4)0.1397 (18)
N30.4367 (4)0.4395 (3)0.3436 (4)0.155 (2)
N40.3389 (3)0.84292 (18)0.9011 (3)0.0855 (9)
N50.4106 (3)0.8267 (2)0.9946 (3)0.0987 (12)
C40.3881 (2)0.42884 (18)0.0005 (3)0.0584 (7)
C70.15287 (19)0.48163 (13)0.3208 (2)0.0398 (5)
C150.0863 (2)0.35912 (14)0.8475 (3)0.0484 (6)
H15A0.02590.38920.87140.058*
C10.2378 (2)0.46654 (13)0.2094 (3)0.0414 (5)
C80.17273 (19)0.66528 (13)0.6976 (2)0.0409 (5)
C20.2172 (2)0.48554 (14)0.0677 (2)0.0460 (6)
H2A0.15240.51180.04300.055*
C60.3359 (2)0.42912 (18)0.2440 (3)0.0595 (7)
H6A0.35120.41590.33840.071*
C130.1512 (2)0.73877 (15)0.6624 (3)0.0539 (6)
H13A0.09850.74980.59070.065*
C30.2911 (2)0.46609 (15)0.0371 (3)0.0512 (6)
H3A0.27530.47810.13200.061*
C90.2511 (2)0.65078 (16)0.8053 (3)0.0556 (7)
H9A0.26610.60160.83080.067*
C140.11051 (19)0.60338 (13)0.6237 (2)0.0397 (5)
C100.3073 (2)0.70738 (18)0.8752 (3)0.0603 (7)
H10A0.35960.69660.94750.072*
C120.2067 (3)0.79604 (16)0.7321 (3)0.0635 (8)
H12B0.19080.84530.70810.076*
C110.2856 (2)0.78027 (17)0.8373 (3)0.0576 (7)
C170.0706 (3)0.3082 (2)1.0850 (3)0.0822 (11)
H17A0.00970.34321.08810.123*
H17B0.12580.32071.15720.123*
H17C0.04280.25881.10180.123*
C160.2150 (3)0.26297 (19)0.9201 (4)0.0807 (10)
H16A0.24070.27040.82480.121*
H16B0.19230.21200.93150.121*
H16C0.27460.27420.98730.121*
C50.4114 (2)0.4111 (2)0.1403 (3)0.0717 (9)
H5A0.47810.38710.16520.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04444 (19)0.02783 (19)0.03131 (18)0.00240 (10)0.00460 (12)0.00345 (10)
O10.0503 (10)0.0503 (11)0.0409 (9)0.0099 (7)0.0020 (7)0.0104 (8)
O50.0606 (10)0.0393 (10)0.0408 (9)0.0062 (8)0.0076 (7)0.0085 (8)
O30.0538 (10)0.0364 (10)0.0474 (9)0.0021 (7)0.0126 (8)0.0021 (8)
O20.0541 (10)0.0447 (10)0.0416 (9)0.0133 (8)0.0052 (7)0.0058 (8)
O40.0648 (11)0.0328 (10)0.0507 (10)0.0040 (8)0.0167 (8)0.0013 (8)
N70.0779 (15)0.0430 (13)0.0485 (12)0.0044 (11)0.0166 (11)0.0141 (10)
N10.0804 (18)0.112 (3)0.0643 (18)0.0276 (17)0.0221 (14)0.0009 (17)
N20.088 (2)0.157 (3)0.069 (2)0.035 (2)0.0240 (17)0.016 (2)
N60.135 (3)0.192 (5)0.091 (3)0.087 (3)0.021 (2)0.024 (3)
N30.131 (3)0.272 (7)0.061 (2)0.059 (3)0.026 (2)0.009 (3)
N40.094 (2)0.088 (2)0.0738 (18)0.0434 (17)0.0006 (16)0.0252 (16)
N50.105 (2)0.124 (3)0.0677 (19)0.068 (2)0.0097 (18)0.0299 (19)
C40.0564 (16)0.0638 (19)0.0553 (16)0.0072 (14)0.0110 (13)0.0019 (14)
C70.0454 (13)0.0319 (13)0.0421 (13)0.0001 (10)0.0022 (10)0.0011 (10)
C150.0594 (15)0.0403 (15)0.0450 (14)0.0014 (11)0.0108 (11)0.0081 (11)
C10.0471 (13)0.0353 (13)0.0418 (13)0.0009 (10)0.0004 (10)0.0003 (10)
C80.0455 (12)0.0370 (13)0.0403 (12)0.0018 (10)0.0023 (10)0.0048 (10)
C20.0527 (14)0.0416 (14)0.0437 (13)0.0080 (11)0.0016 (10)0.0015 (11)
C60.0550 (16)0.076 (2)0.0476 (15)0.0150 (14)0.0009 (12)0.0108 (14)
C130.0583 (15)0.0437 (16)0.0593 (16)0.0019 (12)0.0070 (12)0.0032 (13)
C30.0627 (16)0.0511 (16)0.0398 (14)0.0009 (13)0.0006 (11)0.0011 (12)
C90.0623 (16)0.0483 (16)0.0557 (16)0.0008 (13)0.0105 (12)0.0027 (13)
C140.0473 (13)0.0348 (13)0.0370 (12)0.0003 (10)0.0025 (10)0.0008 (10)
C100.0559 (16)0.073 (2)0.0517 (16)0.0075 (14)0.0087 (12)0.0109 (15)
C120.0780 (19)0.0398 (16)0.0725 (19)0.0082 (14)0.0040 (15)0.0064 (14)
C110.0612 (16)0.0577 (18)0.0543 (16)0.0193 (14)0.0113 (13)0.0180 (14)
C170.124 (3)0.076 (2)0.0466 (17)0.021 (2)0.0081 (17)0.0223 (15)
C160.098 (2)0.059 (2)0.084 (2)0.0146 (18)0.0344 (19)0.0090 (18)
C50.0555 (17)0.097 (3)0.0628 (18)0.0284 (16)0.0050 (14)0.0108 (18)
Geometric parameters (Å, °) top
Cu1—O11.9545 (17)C1—C21.387 (3)
Cu1—O41.9711 (17)C1—C61.382 (4)
Cu1—O2i1.9747 (16)C8—C131.382 (4)
Cu1—O3i1.9765 (16)C8—C91.384 (3)
Cu1—O52.1767 (16)C8—C141.496 (3)
Cu1—Cu1i2.6363 (5)C2—C31.379 (3)
O1—C71.256 (3)C2—H2A0.9300
O5—C151.231 (3)C6—C51.377 (4)
O3—C141.258 (3)C6—H6A0.9300
O3—Cu1i1.9765 (16)C13—C121.379 (4)
O2—C71.260 (3)C13—H13A0.9300
O2—Cu1i1.9747 (16)C3—H3A0.9300
O4—C141.261 (3)C9—C101.375 (4)
N7—C151.316 (3)C9—H9A0.9300
N7—C161.436 (4)C10—C111.378 (4)
N7—C171.456 (4)C10—H10A0.9300
N1—N21.245 (4)C12—C111.376 (4)
N1—C41.429 (3)C12—H12B0.9300
N2—N31.130 (5)C17—H17A0.9600
N6—N51.142 (5)C17—H17B0.9600
N4—N51.245 (5)C17—H17C0.9600
N4—C111.417 (4)C16—H16A0.9600
C4—C31.373 (4)C16—H16B0.9600
C4—C51.379 (4)C16—H16C0.9600
C7—C11.495 (3)C5—H5A0.9300
C15—H15A0.9300
O1—Cu1—O489.73 (8)C3—C2—C1121.1 (2)
O1—Cu1—O2i168.40 (7)C3—C2—H2A119.4
O4—Cu1—O2i88.43 (8)C1—C2—H2A119.4
O1—Cu1—O3i89.17 (7)C5—C6—C1120.8 (3)
O4—Cu1—O3i168.48 (7)C5—C6—H6A119.6
O2i—Cu1—O3i90.35 (7)C1—C6—H6A119.6
O1—Cu1—O597.62 (6)C12—C13—C8120.9 (3)
O4—Cu1—O596.40 (7)C12—C13—H13A119.6
O2i—Cu1—O593.97 (7)C8—C13—H13A119.6
O3i—Cu1—O595.12 (7)C4—C3—C2119.6 (2)
O1—Cu1—Cu1i85.10 (5)C4—C3—H3A120.2
O4—Cu1—Cu1i85.48 (5)C2—C3—H3A120.2
O2i—Cu1—Cu1i83.34 (5)C10—C9—C8121.5 (3)
O3i—Cu1—Cu1i83.00 (5)C10—C9—H9A119.2
O5—Cu1—Cu1i176.69 (5)C8—C9—H9A119.2
C7—O1—Cu1122.33 (15)O3—C14—O4125.6 (2)
C15—O5—Cu1119.94 (16)O3—C14—C8117.4 (2)
C14—O3—Cu1i124.34 (15)O4—C14—C8117.0 (2)
C7—O2—Cu1i123.31 (15)C9—C10—C11119.4 (3)
C14—O4—Cu1121.62 (15)C9—C10—H10A120.3
C15—N7—C16121.1 (3)C11—C10—H10A120.3
C15—N7—C17121.1 (3)C11—C12—C13120.0 (3)
C16—N7—C17117.7 (3)C11—C12—H12B120.0
N2—N1—C4114.4 (3)C13—C12—H12B120.0
N3—N2—N1173.3 (4)C12—C11—C10120.1 (3)
N5—N4—C11114.0 (3)C12—C11—N4115.6 (3)
N6—N5—N4173.3 (4)C10—C11—N4124.3 (3)
C3—C4—C5120.1 (2)N7—C17—H17A109.5
C3—C4—N1123.6 (3)N7—C17—H17B109.5
C5—C4—N1116.2 (3)H17A—C17—H17B109.5
O1—C7—O2125.8 (2)N7—C17—H17C109.5
O1—C7—C1117.0 (2)H17A—C17—H17C109.5
O2—C7—C1117.1 (2)H17B—C17—H17C109.5
O5—C15—N7126.9 (3)N7—C16—H16A109.5
O5—C15—H15A116.5N7—C16—H16B109.5
N7—C15—H15A116.5H16A—C16—H16B109.5
C2—C1—C6118.4 (2)N7—C16—H16C109.5
C2—C1—C7121.0 (2)H16A—C16—H16C109.5
C6—C1—C7120.5 (2)H16B—C16—H16C109.5
C13—C8—C9118.2 (2)C4—C5—C6120.0 (3)
C13—C8—C14120.7 (2)C4—C5—H5A120.0
C9—C8—C14121.1 (2)C6—C5—H5A120.0
Symmetry codes: (i) −x, −y+1, −z+1.
references
References top

Del Sesto, R. E., Arif, A. M. & Miller, J. S. (2000). Inorg. Chem. 39, 4894–4902.

Li, Y.-W., Zhao, J.-P., Wang, L.-F. & Bu, X.-H. (2011). CrystEngComm, 13, 6002–6006.

Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sato, H., Matsuda, R., Sugimoto, K., Takata, M. & Kitagawa, S. (2010). Nat. Mater. 9, 661–666.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.