supplementary materials


bh2404 scheme

Acta Cryst. (2012). E68, o90    [ doi:10.1107/S1600536811052718 ]

Bis(trimethylammonium) naphthalene-1,5-disulfonate

Y. Jin

Abstract top

The asymmetric unit of the title compound, 2C3H10N+·C10H6S2O62-, contains a half-anion, which is completed by inversion symmetry, and one cation. The cations and anions are associated via strong N-H...O(sulfonate) hydrogen-bonding interactions, forming cation-anion-cation groups. Secondary interactions such as C-H(ammonium)...O(sulfonate) and van der Waals interactions link the cations and anions together in a three-dimensional crystal structure, with zigzag rows of cations lying between layers of anions.

Comment top

Ferroelectric compounds have displayed a variety of technical applications, such as ferroelectric random access memories, infrared detectors, piezoelectric sensors, nonlinear optical devices, as a result of their excellent ferroelectric, piezoelectric, pyroelectric, and optical properties. Most of the new ferroelectric metal-organic compounds consistent with the necessary requirements for ferroelectric properties have been explored. However, the conditions required in these systems, such as a phase transition, a good electric hysteresis loop and electric domain, and a dielectric anomaly, often disappear (Zhang et al., 2009). Hence, pure organic compounds can be of great potential and can probably make up for the drawbacks found in ferroelectric metal-organic compounds. Reversible structural phase transition remains one of the prominent properties for ferroelectrics. For a small part of these compounds, the components can be arranged in a disordered fashion at a relative high temperature and in an ordered fashion at a relative low temperature. The transition from the disordered arrangement to the ordered one gives rise to sharp change in the physical properties of the compound (Fu et al., 2009; Zhang et al., 2008, 2010; Ye et al., 2006). As part of our search for simple ferroelectric compounds, we have investigated the title compound and report now its room temperature crystal structure.

The centrosymmetric anion and one cation are shown in Fig. 1 with the hydrogen bonds listed in Table 1. The existence of numerous hydrogen-bonding interactions helps to make the substance more stable, and thus forms a three-dimensional layered structure. The interactions tie the cations and anions together in sheets with zigzag rows of cations lying between layers of anions (Fig. 2). There are only van der Waals interactions between layers. The reported structure is similar to that of a related naphthalene-1,5-disulfonate salt (Wang & Yang, 2011).

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Ye et al. (2006); Zhang et al. (2008, 2009, 2010); Fu et al. (2009). For a related structure, see: Wang & Yang (2011).

Experimental top

(C3H10N+)2(C10H6S2O62-) was formed from a mixture of N(CH3)3 (8 mL), C10H8O6S2 (288.28 mg, 1.00 mmol), and distilled water (10 ml), which was stirred for few minutes at room temperature, giving a clear transparent solution. After evaporation over few days, block-shaped colorless crystals suitable for X-ray diffraction were obtained in about 82% yield, filtered and washed with distilled water.

Refinement top

H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.93–0.96 Å, N—H = 0.91 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the c axis. Intermolecular interactions are shown as dashed lines.
Bis(trimethylammonium) naphthalene-1,5-disulfonate top
Crystal data top
2C3H10N+·C10H6O6S22F(000) = 432
Mr = 406.51Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3450 reflections
a = 8.3428 (17) Åθ = 6.2–55.3°
b = 10.502 (2) ŵ = 0.30 mm1
c = 11.742 (2) ÅT = 293 K
β = 105.81 (3)°Block, colourless
V = 989.8 (3) Å30.3 × 0.3 × 0.2 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2265 independent reflections
Radiation source: fine-focus sealed tube2016 reflections with I > 2σ(I)
graphiteRint = 0.036
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.489, Tmax = 1.000k = 1313
10031 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.3652P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2265 reflectionsΔρmax = 0.28 e Å3
119 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.055 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
2C3H10N+·C10H6O6S22V = 989.8 (3) Å3
Mr = 406.51Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3428 (17) ŵ = 0.30 mm1
b = 10.502 (2) ÅT = 293 K
c = 11.742 (2) Å0.3 × 0.3 × 0.2 mm
β = 105.81 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2265 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2016 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 1.000Rint = 0.036
10031 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.28 e Å3
S = 1.10Δρmin = 0.36 e Å3
2265 reflectionsAbsolute structure: ?
119 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7732 (3)0.1761 (3)0.4624 (2)0.0783 (8)
H1B0.79490.23890.40900.117*
H1C0.65930.18260.46470.117*
H1D0.79290.09270.43570.117*
C20.8549 (4)0.1033 (3)0.6651 (3)0.0926 (10)
H2B0.92800.11940.74230.139*
H2C0.87600.01970.63950.139*
H2D0.74130.10870.66830.139*
C30.8748 (4)0.3266 (3)0.6265 (3)0.0824 (9)
H3B0.94910.33390.70460.124*
H3C0.76290.34360.62930.124*
H3D0.90610.38680.57490.124*
C40.4055 (2)0.39604 (16)0.66437 (14)0.0336 (4)
H4A0.35670.34520.71050.040*
C50.37869 (18)0.37009 (14)0.54673 (13)0.0279 (3)
C60.44909 (18)0.44781 (14)0.47321 (13)0.0258 (3)
C70.4218 (2)0.42584 (15)0.35041 (14)0.0315 (4)
H7A0.35350.35890.31460.038*
C80.4940 (2)0.50113 (16)0.28418 (14)0.0353 (4)
H8A0.47640.48420.20400.042*
N10.88425 (18)0.19790 (16)0.58184 (15)0.0444 (4)
H1E0.99040.18640.57720.053*
O10.3624 (2)0.15499 (14)0.43979 (16)0.0635 (5)
O20.21016 (15)0.17580 (12)0.58538 (12)0.0406 (3)
O30.11286 (19)0.28226 (17)0.39993 (14)0.0646 (5)
S10.25686 (5)0.23499 (4)0.48711 (4)0.03500 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0441 (12)0.127 (3)0.0569 (15)0.0063 (14)0.0017 (11)0.0125 (16)
C20.112 (2)0.086 (2)0.0729 (18)0.0519 (19)0.0134 (17)0.0023 (15)
C30.0762 (18)0.0563 (15)0.104 (2)0.0190 (13)0.0066 (16)0.0161 (14)
C40.0363 (8)0.0363 (8)0.0301 (8)0.0014 (7)0.0123 (7)0.0050 (6)
C50.0247 (7)0.0274 (7)0.0310 (8)0.0002 (6)0.0068 (6)0.0011 (6)
C60.0256 (7)0.0249 (7)0.0265 (7)0.0029 (6)0.0064 (6)0.0005 (6)
C70.0347 (8)0.0298 (8)0.0285 (8)0.0014 (6)0.0061 (6)0.0041 (6)
C80.0423 (9)0.0385 (9)0.0254 (7)0.0014 (7)0.0100 (7)0.0011 (6)
N10.0267 (7)0.0521 (10)0.0534 (10)0.0035 (6)0.0092 (7)0.0075 (8)
O10.0751 (11)0.0409 (8)0.0925 (12)0.0193 (7)0.0537 (10)0.0242 (8)
O20.0332 (6)0.0420 (7)0.0471 (7)0.0069 (5)0.0118 (5)0.0085 (5)
O30.0455 (8)0.0811 (11)0.0533 (9)0.0226 (8)0.0101 (7)0.0189 (8)
S10.0322 (2)0.0350 (3)0.0379 (3)0.00957 (16)0.00984 (17)0.00121 (16)
Geometric parameters (Å, °) top
C1—N11.473 (3)C4—H4A0.9300
C1—H1B0.9600C5—C61.426 (2)
C1—H1C0.9600C5—S11.7744 (16)
C1—H1D0.9600C6—C71.416 (2)
C2—N11.460 (3)C6—C6i1.424 (3)
C2—H2B0.9600C7—C81.359 (2)
C2—H2C0.9600C7—H7A0.9300
C2—H2D0.9600C8—C4i1.400 (2)
C3—N11.459 (3)C8—H8A0.9300
C3—H3B0.9600N1—H1E0.9100
C3—H3C0.9600O1—S11.4338 (15)
C3—H3D0.9600O2—S11.4541 (13)
C4—C51.365 (2)O3—S11.4379 (16)
C4—C8i1.400 (2)
N1—C1—H1B109.5C6—C5—S1120.33 (11)
N1—C1—H1C109.5C7—C6—C6i119.11 (17)
H1B—C1—H1C109.5C7—C6—C5123.01 (14)
N1—C1—H1D109.5C6i—C6—C5117.88 (16)
H1B—C1—H1D109.5C8—C7—C6120.95 (15)
H1C—C1—H1D109.5C8—C7—H7A119.5
N1—C2—H2B109.5C6—C7—H7A119.5
N1—C2—H2C109.5C7—C8—C4i120.58 (15)
H2B—C2—H2C109.5C7—C8—H8A119.7
N1—C2—H2D109.5C4i—C8—H8A119.7
H2B—C2—H2D109.5C3—N1—C2110.7 (2)
H2C—C2—H2D109.5C3—N1—C1113.8 (2)
N1—C3—H3B109.5C2—N1—C1110.8 (2)
N1—C3—H3C109.5C3—N1—H1E107.0
H3B—C3—H3C109.5C2—N1—H1E107.0
N1—C3—H3D109.5C1—N1—H1E107.0
H3B—C3—H3D109.5O1—S1—O3114.11 (11)
H3C—C3—H3D109.5O1—S1—O2112.49 (9)
C5—C4—C8i120.29 (15)O3—S1—O2111.10 (8)
C5—C4—H4A119.9O1—S1—C5105.98 (8)
C8i—C4—H4A119.9O3—S1—C5106.41 (9)
C4—C5—C6121.16 (14)O2—S1—C5106.10 (8)
C4—C5—S1118.50 (12)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···O2ii0.911.812.718 (2)173.
C1—H1C···O10.962.433.372 (3)166
C2—H2B···O3iii0.962.313.232 (4)162
N1—H1E···S1ii0.912.763.5967 (18)154.
Symmetry codes: (ii) x+1, y, z; (iii) x+1, −y+1/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1E···O2i0.911.812.718 (2)173.
C1—H1C···O10.962.433.372 (3)166
C2—H2B···O3ii0.962.313.232 (4)162
Symmetry codes: (i) x+1, y, z; (ii) x+1, −y+1/2, z+1/2.
Acknowledgements top

The author thanks the Ordered Matter Science Research Center, Southeast University, for its excellent experimental conditions and its generous financial support.

references
References top

Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, C. & Yang, S. L. (2011). Acta Cryst. E67, o1847.

Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Hong Chan, P. W., Zhu, J.-S., Huang, S. D. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.

Zhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.

Zhang, W., Xiong, R.-G. & Huang, S. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.

Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.