supplementary materials


bq2325 scheme

Acta Cryst. (2012). E68, o202    [ doi:10.1107/S1600536811053256 ]

4-Chloro-N-(2,3-dimethylphenyl)benzamide

V. Z. Rodrigues, J. Kamenícek,, B. T. Gowda and J. Kozísek

Abstract top

In the title compound, C15H14ClNO, the ortho- and meta-methyl substituents in the aniline ring are anti to the N-H bond. The dihedral angle between the benzoyl and aniline benzene rings is 95.0 (1)°. N-H...O hydrogen bonds and C-H...[pi] interactions link the molecules in the crystal structure.

Comment top

The structural aspects of N-aryl amides are of interest due to their chemical and biological importance. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2001; Rodrigues et al., 2011), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Gowda et al., 2005) and N-chloro-arylsulfonamides (Gowda et al., 1996), in the present work, crystal structure of 4-chloro-N-(2,3-dimethylphenyl)benzamide (I) has been determined (Fig.1). In (I), the ortho- and meta-methyl substituents in the anilino ring are positioned anti to the N–H bond, similar to that observed in 4-methyl-N-(2,3-dimethylphenyl)benzamide (II) (Rodrigues et al., 2011).

The central amide group –NHCO– is tilted to the anilino ring with the C9—C8—N1—C1 and C13—C8—N1—C1 torsion angles of -64.2 (3)° and 117.4 (2)°, compared to the corresponding values of -63.4 (2)° and 118.1 (1)° in (II). The C3—C2—C1—N1 and C7—C2—C1—N1 torsion angles are 158.0 (2)° and -22.5 (3)°, respectively, in contrast to the corresponding angles of 156.8 (1)° and -24.4 (2)° in (II). The C3—C2—C1—O1 and C7—C2—C1—O1 torsion angles are -21.9 (3)° and 157.6 (2)°, respectively, compared to the values of -23.2 (2)° and 155.6 (1)° in (II). The planes of two benzene rings are tilted relative to each other by 95.0 (1)°.

There are two clear C—H···pi interactions in the structure, C7—H7···Cg2 (Cg2 is the centroid of C8—C13 ring) and C14—H14A···Cg1 (Cg1 is the centroid of C2—C7 ring).

The packing of molecules linked by N—H···O hydrogen bonds is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (1996, 2001). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2001); Rodrigues et al. (2011), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004), on N-(aryl)-arylsulfonamides, see: Gowda et al. (2005) and on N-chloroarylamides, see: Gowda et al. (1996).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (1996, 2001). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Rod-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93 Å (C-aromatic), 0.96 Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound generated by N—H···O hydrogen bonds which are shown by dashed lines. C-H···π interactions are shown by thin dashed lines. H atoms not involved in intermolecular bonding have been omitted.
4-Chloro-N-(2,3-dimethylphenyl)benzamide top
Crystal data top
C15H14ClNOF(000) = 544
Mr = 259.72Dx = 1.265 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3994 reflections
a = 8.1082 (8) Åθ = 3.4–26.4°
b = 19.5189 (17) ŵ = 0.27 mm1
c = 9.2943 (9) ÅT = 293 K
β = 111.957 (11)°Rod, colorless
V = 1364.3 (2) Å30.90 × 0.15 × 0.09 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2793 independent reflections
Radiation source: Enhance (Mo) X-ray Source1923 reflections with I > 2σ(I)
graphiteRint = 0.058
Detector resolution: 10.4340 pixels mm-1θmax = 26.4°, θmin = 3.4°
ω scansh = 1010
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 2424
Tmin = 0.953, Tmax = 0.976l = 1111
22574 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.3246P]
where P = (Fo2 + 2Fc2)/3
2793 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H14ClNOV = 1364.3 (2) Å3
Mr = 259.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1082 (8) ŵ = 0.27 mm1
b = 19.5189 (17) ÅT = 293 K
c = 9.2943 (9) Å0.90 × 0.15 × 0.09 mm
β = 111.957 (11)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2793 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
1923 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.976Rint = 0.058
22574 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.145Δρmax = 0.40 e Å3
S = 1.04Δρmin = 0.30 e Å3
2793 reflectionsAbsolute structure: ?
165 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7781 (3)0.70473 (10)0.5747 (2)0.0420 (5)
C20.6708 (3)0.65266 (10)0.6192 (2)0.0412 (5)
C30.5249 (3)0.62384 (11)0.5034 (2)0.0512 (6)
H30.49800.63660.40070.061*
C40.4194 (3)0.57674 (12)0.5382 (3)0.0569 (6)
H40.32110.55790.46000.068*
C50.4614 (3)0.55780 (11)0.6907 (3)0.0520 (6)
C60.6067 (3)0.58405 (11)0.8067 (3)0.0527 (6)
H60.63480.57000.90870.063*
C70.7116 (3)0.63166 (11)0.7710 (2)0.0477 (5)
H70.81060.64980.84960.057*
C80.9834 (3)0.80088 (10)0.6627 (2)0.0409 (5)
C91.1274 (3)0.78514 (11)0.6215 (2)0.0442 (5)
C101.2233 (3)0.83941 (13)0.5917 (3)0.0555 (6)
C111.1751 (3)0.90633 (14)0.6085 (3)0.0653 (7)
H111.23750.94230.58670.078*
C121.0378 (3)0.92083 (12)0.6563 (3)0.0605 (6)
H121.01030.96600.66970.073*
C130.9411 (3)0.86789 (11)0.6842 (2)0.0488 (5)
H130.84830.87710.71710.059*
C141.1822 (3)0.71233 (12)0.6117 (3)0.0608 (6)
H14A1.30830.70790.66620.073*
H14B1.15210.70000.50490.073*
H14C1.12140.68250.65760.073*
C151.3817 (4)0.82577 (19)0.5477 (3)0.0854 (9)
H15A1.42440.86830.52280.103*
H15B1.34710.79590.45920.103*
H15C1.47420.80450.63320.103*
N10.8765 (2)0.74774 (8)0.68807 (18)0.0440 (4)
H10.87470.74290.77940.053*
O10.7749 (2)0.70745 (8)0.44138 (16)0.0549 (4)
Cl10.32708 (12)0.49969 (4)0.73735 (11)0.0947 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0504 (12)0.0442 (11)0.0388 (11)0.0029 (9)0.0251 (10)0.0015 (8)
C20.0484 (12)0.0416 (11)0.0401 (11)0.0007 (9)0.0240 (9)0.0021 (8)
C30.0616 (14)0.0523 (13)0.0416 (12)0.0033 (11)0.0214 (11)0.0019 (9)
C40.0549 (14)0.0555 (14)0.0572 (14)0.0105 (11)0.0172 (11)0.0070 (11)
C50.0592 (14)0.0420 (12)0.0643 (14)0.0042 (10)0.0338 (12)0.0003 (10)
C60.0682 (15)0.0497 (13)0.0467 (12)0.0001 (11)0.0287 (12)0.0061 (10)
C70.0559 (13)0.0501 (13)0.0402 (11)0.0053 (10)0.0216 (10)0.0008 (9)
C80.0455 (11)0.0463 (11)0.0326 (10)0.0001 (9)0.0166 (9)0.0014 (8)
C90.0438 (11)0.0568 (13)0.0330 (10)0.0028 (9)0.0154 (9)0.0018 (9)
C100.0445 (12)0.0769 (17)0.0438 (12)0.0080 (11)0.0150 (10)0.0031 (11)
C110.0634 (16)0.0702 (17)0.0576 (14)0.0220 (13)0.0174 (13)0.0082 (12)
C120.0665 (16)0.0459 (13)0.0603 (15)0.0044 (11)0.0137 (13)0.0010 (10)
C130.0507 (12)0.0474 (12)0.0482 (12)0.0028 (10)0.0184 (10)0.0032 (9)
C140.0598 (14)0.0712 (16)0.0548 (14)0.0188 (12)0.0254 (12)0.0006 (11)
C150.0616 (17)0.130 (3)0.0768 (19)0.0217 (17)0.0397 (15)0.0039 (17)
N10.0571 (11)0.0474 (10)0.0365 (9)0.0051 (8)0.0279 (8)0.0030 (7)
O10.0729 (11)0.0630 (10)0.0374 (8)0.0119 (8)0.0306 (8)0.0022 (6)
Cl10.1000 (6)0.0811 (5)0.1190 (7)0.0323 (4)0.0592 (5)0.0043 (4)
Geometric parameters (Å, °) top
C1—O11.231 (2)C9—C101.401 (3)
C1—N11.350 (3)C9—C141.502 (3)
C1—C21.493 (3)C10—C111.389 (4)
C2—C71.385 (3)C10—C151.510 (3)
C2—C31.386 (3)C11—C121.374 (3)
C3—C41.374 (3)C11—H110.9300
C3—H30.9300C12—C131.379 (3)
C4—C51.378 (3)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—C61.365 (3)C14—H14A0.9600
C5—Cl11.736 (2)C14—H14B0.9600
C6—C71.381 (3)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—C131.386 (3)C15—H15C0.9600
C8—C91.393 (3)N1—H10.8600
C8—N11.427 (2)
O1—C1—N1122.86 (18)C11—C10—C9119.2 (2)
O1—C1—C2120.85 (18)C11—C10—C15120.0 (2)
N1—C1—C2116.28 (16)C9—C10—C15120.7 (2)
C7—C2—C3118.69 (19)C12—C11—C10121.7 (2)
C7—C2—C1122.75 (18)C12—C11—H11119.1
C3—C2—C1118.55 (17)C10—C11—H11119.1
C4—C3—C2121.0 (2)C11—C12—C13119.5 (2)
C4—C3—H3119.5C11—C12—H12120.2
C2—C3—H3119.5C13—C12—H12120.2
C3—C4—C5119.0 (2)C12—C13—C8119.4 (2)
C3—C4—H4120.5C12—C13—H13120.3
C5—C4—H4120.5C8—C13—H13120.3
C6—C5—C4121.3 (2)C9—C14—H14A109.5
C6—C5—Cl1118.99 (17)C9—C14—H14B109.5
C4—C5—Cl1119.68 (18)H14A—C14—H14B109.5
C5—C6—C7119.3 (2)C9—C14—H14C109.5
C5—C6—H6120.3H14A—C14—H14C109.5
C7—C6—H6120.3H14B—C14—H14C109.5
C6—C7—C2120.6 (2)C10—C15—H15A109.5
C6—C7—H7119.7C10—C15—H15B109.5
C2—C7—H7119.7H15A—C15—H15B109.5
C13—C8—C9121.75 (19)C10—C15—H15C109.5
C13—C8—N1117.64 (18)H15A—C15—H15C109.5
C9—C8—N1120.59 (18)H15B—C15—H15C109.5
C8—C9—C10118.2 (2)C1—N1—C8122.76 (15)
C8—C9—C14121.53 (19)C1—N1—H1118.6
C10—C9—C14120.3 (2)C8—N1—H1118.6
O1—C1—C2—C7157.6 (2)C13—C8—C9—C14174.67 (19)
N1—C1—C2—C722.5 (3)N1—C8—C9—C143.7 (3)
O1—C1—C2—C321.9 (3)C8—C9—C10—C111.9 (3)
N1—C1—C2—C3157.99 (19)C14—C9—C10—C11177.1 (2)
C7—C2—C3—C41.8 (3)C8—C9—C10—C15179.5 (2)
C1—C2—C3—C4178.6 (2)C14—C9—C10—C150.6 (3)
C2—C3—C4—C50.6 (3)C9—C10—C11—C121.2 (3)
C3—C4—C5—C61.1 (4)C15—C10—C11—C12176.5 (2)
C3—C4—C5—Cl1178.69 (18)C10—C11—C12—C132.0 (3)
C4—C5—C6—C71.4 (3)C11—C12—C13—C80.4 (3)
Cl1—C5—C6—C7178.32 (17)C9—C8—C13—C123.5 (3)
C5—C6—C7—C20.2 (3)N1—C8—C13—C12178.07 (18)
C3—C2—C7—C61.4 (3)O1—C1—N1—C81.0 (3)
C1—C2—C7—C6179.04 (19)C2—C1—N1—C8178.89 (17)
C13—C8—C9—C104.2 (3)C13—C8—N1—C1117.4 (2)
N1—C8—C9—C10177.40 (17)C9—C8—N1—C164.2 (3)
Hydrogen-bond geometry (Å, °) top
Cg1 and Cg2 are the centroids of C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.182.904 (2)141.
C14—H14A···Cg1ii0.962.943.653 (2)132.
C7—H7···Cg2i0.932.763.612 (2)154.
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x+1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1 and Cg2 are the centroids of C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.182.904 (2)141.
C14—H14A···Cg1ii0.962.943.653 (2)132.
C7—H7···Cg2i0.932.763.612 (2)154.
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x+1, y, z.
Acknowledgements top

VZR thanks the University Grants Commission, Government of India, New Delhi for award of an RFSMS research fellowship. PH and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency (Slovakia) (APVV-0202–10) for finacial support and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

references
References top

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.

Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.

Gowda, B. T., Dou, S. Q. & Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627–636.

Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386–394.

Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.

Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Rodrigues, V. Z., Herich, P., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o2463.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.