supplementary materials


bq2329 scheme

Acta Cryst. (2012). E68, o208    [ doi:10.1107/S1600536811053967 ]

3a,11b-Dihydroxy-3a,11b-dihydro-1H-imidazo[4,5-f][1,10]phenanthroline-2(3H)-thione

H. Wang, P. Mei, W.-Y. Chu, Z.-Z. Sun and Y.-J. Hou

Abstract top

The title compound, C13H10N4O2S, was prepared through a cyclization reaction of 1,10-phenanthroline-5,6-dione and thiourea. The dihedral angle between the pyridine rings is 8.22 (2)°. In the crystal, molecules are connected by N-H...O, O-H...N, N-H...S and O-H...S hydrogen bonds, forming a three-dimensional network.

Comment top

Considerable interest have been paid to the reactions of various metal salts with multi-carboxylate ligands and 1,10-phenanthroline-5,6-dione and the influence of the reaction pH on the structure of the resultant complexes (Liu et al., 2008; Wang et al., 2011; Cong et al., 2009). We prepare 3a,11b-dihydroxy-3,3a-dihydro-1H-imidazo [4,5-f][1,10]phenanthroline-2(11bH)-thione as a precursor of 1,10-phenanthroline-5,6-dione for precise control of the reaction pH.

As shown in Fig. 1, The dihedral angle between the pyridine rings (C1-C5/N1) (C6-C7/C10-C12/N2) is 8.22 (2)°. The neighboring molecules are connected by N-H···O, O-H···N, N-H···Si and O-H···Si hydrogen bonds to form an infinite three-dimensional network (Table 1. and Fig. 2).

Related literature top

For related structures, see: Liu et al. (2008); Wang et al. (2011); Cong et al. (2009).

Experimental top

40 ml 98% H2SO4 and 20 ml 69% HNO3 were mixed in a flask and cooled to 273 K. Then A mixture of 1,10-phenanthroline (4 g, 22.2 mmol) and KBr (4 g, 33.6 mmol) was slowly added while keeping the temperature below 279 K. The resulting solution was refluxed for 4 hr and finally cooled to room temperature. The contents of the flask were poured onto 100 g crushed ice and neutralized with 40% sodium hydroxide solution. The yellow precipitate of 1,10-phenanthroline-5,6-dione was collected by filtration and washed with water. The filtrate was extracted with EtOAc, the organic phase was dried over magnesium sulfate and the solvent was evaporated off under vacuum. All of the crude product was then recrystallized from 100 mL EtOH to give 2.6 g of 1,10-phenanthroline-5,6-dione as yellow needles. The product of the reaction mentioned above was reacted with thiourea (13 g, 217 mmol) in 50 ml methanol for 5 hr under reflux. After cooling, the precipitated product was separated and recrystallized from EtOH to give 2.1 g (63%) of 1,11b-dihydro-3a,11b-dihydroxy-1H-imidazo[4,5-f][1,10] phenanthroline-2(11bH)-thione as white powder. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from methanol at room temperature in a total yield of 24%. Anal. Calcd. for C13H10N4O2S: C, 54.54; H, 3.52; N, 19.57. Found(%):C, 54.60; H, 3.58; N, 19.66. IR(KBr) 1H NMR (400 MHz, DMSO-d6): 9.47 (s, 2H), 8.71 (dd, J = 4.6, 1.7 Hz, 2H), 8.23 (dd, J = 7.9, 1.7 Hz, 2H), 7.53 (dd, J = 7.9, 4.6 Hz, 2H), 6.83 (s, 2H), 3.31 (s, 2H).

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.93 Å (aromatic C), and with Uiso(H) = 1.2Ueq(C). H atoms bound to O atoms were placed in calculated positions and treated as riding on their parent atoms, with O—H = 0.82 Å and with Uiso(H) = 1.5Ueq(O). H atoms bound to N atoms were located in the difference-Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound I, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the packing of the title compound, viewed down the c-axis. Dashed lines indicate hydrogen bonds.
2,6-dihydroxy-11,14-diazatetracyclo[11.4.0.02,6.07,12]heptadeca- 1(13),7(12),8,10,14,16-hexaene-4-thione top
Crystal data top
C13H10N4O2SF(000) = 592
Mr = 286.31Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 512 reflections
a = 11.259 (4) Åθ = 2.4–19.3°
b = 12.815 (4) ŵ = 0.27 mm1
c = 8.565 (3) ÅT = 293 K
β = 100.382 (5)°Block, colorless
V = 1215.6 (7) Å30.18 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD detector
diffractometer
3035 independent reflections
Radiation source: fine-focus sealed tube1325 reflections with I > 2σ(I)
graphiteRint = 0.107
phi and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.952, Tmax = 0.968k = 1710
9690 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0587P)2]
where P = (Fo2 + 2Fc2)/3
3035 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H10N4O2SV = 1215.6 (7) Å3
Mr = 286.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.259 (4) ŵ = 0.27 mm1
b = 12.815 (4) ÅT = 293 K
c = 8.565 (3) Å0.18 × 0.14 × 0.12 mm
β = 100.382 (5)°
Data collection top
Bruker SMART APEXII CCD detector
diffractometer
3035 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1325 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.968Rint = 0.107
9690 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161Δρmax = 0.38 e Å3
S = 0.94Δρmin = 0.30 e Å3
3035 reflectionsAbsolute structure: ?
191 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41534 (9)0.63611 (8)0.62203 (12)0.0424 (3)
O10.1477 (2)0.70072 (19)0.1051 (3)0.0370 (7)
H1O0.08190.68500.05250.055*
O20.3623 (2)0.6130 (2)0.0847 (3)0.0452 (7)
H2O0.37020.67330.11680.068*
N10.0346 (3)0.3969 (2)0.1943 (4)0.0387 (8)
N20.1205 (3)0.3145 (2)0.0259 (4)0.0378 (8)
N30.2442 (3)0.6720 (3)0.3648 (4)0.0351 (8)
N40.3596 (3)0.5401 (3)0.3380 (4)0.0412 (9)
C50.0627 (3)0.4558 (3)0.1826 (4)0.0301 (8)
C90.1854 (3)0.6227 (3)0.2162 (4)0.0302 (8)
C40.0789 (3)0.5553 (3)0.2417 (4)0.0269 (8)
C70.2619 (3)0.4546 (3)0.0946 (4)0.0310 (9)
C60.1524 (3)0.4060 (3)0.0979 (4)0.0305 (9)
C80.2935 (3)0.5569 (3)0.1767 (4)0.0337 (9)
C30.0097 (3)0.5981 (3)0.3175 (4)0.0357 (9)
H30.00160.66520.35910.043*
C130.3384 (3)0.6167 (3)0.4379 (4)0.0326 (9)
C100.3448 (3)0.4034 (3)0.0190 (5)0.0447 (11)
H100.41960.43310.01520.054*
C20.1093 (3)0.5385 (3)0.3291 (4)0.0405 (10)
H2A0.17030.56510.37770.049*
C10.1175 (3)0.4392 (3)0.2681 (5)0.0428 (10)
H1A0.18460.39920.27880.051*
C120.2019 (4)0.2682 (3)0.0466 (5)0.0458 (11)
H120.18080.20510.09780.055*
C110.3136 (4)0.3072 (3)0.0505 (5)0.0503 (11)
H110.36800.27010.09880.060*
H4N0.428 (3)0.503 (3)0.356 (4)0.043 (11)*
H3N0.203 (3)0.717 (3)0.421 (4)0.047 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0378 (5)0.0448 (7)0.0423 (6)0.0060 (5)0.0008 (4)0.0064 (5)
O10.0349 (14)0.0285 (16)0.0458 (16)0.0037 (12)0.0027 (12)0.0078 (13)
O20.0439 (16)0.0358 (17)0.0624 (19)0.0067 (14)0.0269 (14)0.0091 (14)
N10.0371 (18)0.032 (2)0.049 (2)0.0024 (15)0.0144 (16)0.0008 (15)
N20.0457 (19)0.0283 (19)0.0409 (19)0.0063 (15)0.0117 (15)0.0059 (15)
N30.0282 (17)0.035 (2)0.0402 (19)0.0029 (15)0.0013 (14)0.0086 (16)
N40.0374 (19)0.039 (2)0.043 (2)0.0132 (17)0.0035 (16)0.0121 (17)
C50.0320 (19)0.027 (2)0.0303 (19)0.0002 (17)0.0027 (15)0.0040 (17)
C90.0324 (19)0.025 (2)0.0322 (19)0.0015 (16)0.0043 (16)0.0023 (17)
C40.0304 (19)0.022 (2)0.0281 (19)0.0016 (16)0.0040 (15)0.0004 (16)
C70.031 (2)0.028 (2)0.033 (2)0.0005 (16)0.0037 (16)0.0034 (17)
C60.034 (2)0.029 (2)0.0282 (19)0.0040 (17)0.0030 (16)0.0005 (16)
C80.0274 (19)0.036 (2)0.038 (2)0.0007 (17)0.0055 (16)0.0004 (19)
C30.037 (2)0.029 (2)0.042 (2)0.0031 (17)0.0081 (17)0.0049 (18)
C130.0277 (19)0.029 (2)0.041 (2)0.0016 (16)0.0061 (17)0.0037 (18)
C100.037 (2)0.044 (3)0.056 (3)0.0013 (19)0.016 (2)0.011 (2)
C20.032 (2)0.040 (3)0.051 (3)0.0043 (19)0.0135 (18)0.002 (2)
C10.038 (2)0.039 (3)0.054 (3)0.0058 (19)0.0148 (19)0.009 (2)
C120.061 (3)0.032 (3)0.047 (2)0.001 (2)0.016 (2)0.008 (2)
C110.053 (3)0.040 (3)0.062 (3)0.005 (2)0.019 (2)0.014 (2)
Geometric parameters (Å, °) top
S1—C131.676 (4)C9—C41.524 (5)
O1—C91.393 (4)C9—C81.568 (5)
O1—H1O0.8200C4—C31.397 (5)
O2—C81.399 (4)C7—C61.387 (5)
O2—H2O0.8200C7—C101.392 (5)
N1—C11.333 (4)C7—C81.499 (5)
N1—C51.349 (4)C3—C21.375 (5)
N2—C121.335 (5)C3—H30.9300
N2—C61.343 (4)C10—C111.386 (5)
N3—C131.334 (4)C10—H100.9300
N3—C91.467 (4)C2—C11.372 (5)
N3—H3N0.93 (4)C2—H2A0.9300
N4—C131.351 (4)C1—H1A0.9300
N4—C81.463 (5)C12—C111.360 (5)
N4—H4N0.90 (4)C12—H120.9300
C5—C41.372 (5)C11—H110.9300
C5—C61.489 (5)
C9—O1—H1O109.5O2—C8—N4111.6 (3)
C8—O2—H2O109.5O2—C8—C7107.0 (3)
C1—N1—C5117.1 (3)N4—C8—C7110.6 (3)
C12—N2—C6116.9 (3)O2—C8—C9112.1 (3)
C13—N3—C9112.0 (3)N4—C8—C999.1 (3)
C13—N3—H3N121 (2)C7—C8—C9116.4 (3)
C9—N3—H3N122 (2)C2—C3—C4118.4 (3)
C13—N4—C8111.9 (3)C2—C3—H3120.8
C13—N4—H4N122 (2)C4—C3—H3120.8
C8—N4—H4N121 (2)N3—C13—N4107.8 (3)
N1—C5—C4123.3 (3)N3—C13—S1126.6 (3)
N1—C5—C6115.3 (3)N4—C13—S1125.7 (3)
C4—C5—C6121.4 (3)C11—C10—C7118.7 (4)
O1—C9—N3108.6 (3)C11—C10—H10120.7
O1—C9—C4110.7 (3)C7—C10—H10120.7
N3—C9—C4111.3 (3)C1—C2—C3119.2 (4)
O1—C9—C8113.0 (3)C1—C2—H2A120.4
N3—C9—C899.9 (3)C3—C2—H2A120.4
C4—C9—C8112.8 (3)N1—C1—C2123.5 (4)
C5—C4—C3118.5 (3)N1—C1—H1A118.2
C5—C4—C9122.0 (3)C2—C1—H1A118.2
C3—C4—C9119.4 (3)N2—C12—C11124.3 (4)
C6—C7—C10118.1 (3)N2—C12—H12117.8
C6—C7—C8121.3 (3)C11—C12—H12117.8
C10—C7—C8120.5 (3)C12—C11—C10118.7 (4)
N2—C6—C7123.2 (3)C12—C11—H11120.6
N2—C6—C5116.7 (3)C10—C11—H11120.6
C7—C6—C5120.1 (3)
C1—N1—C5—C40.3 (5)C10—C7—C8—O237.4 (4)
C1—N1—C5—C6179.4 (3)C6—C7—C8—N492.5 (4)
C13—N3—C9—O1142.9 (3)C10—C7—C8—N484.4 (4)
C13—N3—C9—C495.0 (3)C6—C7—C8—C919.5 (5)
C13—N3—C9—C824.4 (4)C10—C7—C8—C9163.6 (3)
N1—C5—C4—C30.1 (5)O1—C9—C8—O225.6 (4)
C6—C5—C4—C3178.9 (3)N3—C9—C8—O289.6 (3)
N1—C5—C4—C9175.5 (3)C4—C9—C8—O2152.1 (3)
C6—C5—C4—C93.5 (5)O1—C9—C8—N4143.4 (3)
O1—C9—C4—C5106.4 (4)N3—C9—C8—N428.3 (3)
N3—C9—C4—C5132.8 (3)C4—C9—C8—N490.0 (3)
C8—C9—C4—C521.4 (4)O1—C9—C8—C798.1 (4)
O1—C9—C4—C369.0 (4)N3—C9—C8—C7146.8 (3)
N3—C9—C4—C351.9 (4)C4—C9—C8—C728.5 (4)
C8—C9—C4—C3163.2 (3)C5—C4—C3—C20.1 (5)
C12—N2—C6—C72.5 (5)C9—C4—C3—C2175.4 (3)
C12—N2—C6—C5178.3 (3)C9—N3—C13—N48.9 (4)
C10—C7—C6—N23.1 (5)C9—N3—C13—S1169.8 (3)
C8—C7—C6—N2179.9 (3)C8—N4—C13—N312.8 (4)
C10—C7—C6—C5177.7 (3)C8—N4—C13—S1168.6 (3)
C8—C7—C6—C50.7 (5)C6—C7—C10—C110.7 (6)
N1—C5—C6—N28.0 (5)C8—C7—C10—C11177.7 (4)
C4—C5—C6—N2171.1 (3)C4—C3—C2—C10.8 (5)
N1—C5—C6—C7172.7 (3)C5—N1—C1—C21.1 (6)
C4—C5—C6—C78.1 (5)C3—C2—C1—N11.3 (6)
C13—N4—C8—O291.6 (4)C6—N2—C12—C110.6 (6)
C13—N4—C8—C7149.3 (3)N2—C12—C11—C102.8 (6)
C13—N4—C8—C926.5 (4)C7—C10—C11—C122.1 (6)
C6—C7—C8—O2145.7 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.93 (4)2.08 (4)2.980 (4)162 (3)
O2—H2O···S1ii0.822.493.276 (3)160.
N4—H4N···S1iii0.90 (4)2.48 (4)3.365 (4)166 (3)
O1—H1O···N1iv0.822.332.930 (4)130.
O1—H1O···N2iv0.822.263.032 (4)158.
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.93 (4)2.08 (4)2.980 (4)162 (3)
O2—H2O···S1ii0.822.493.276 (3)160.
N4—H4N···S1iii0.90 (4)2.48 (4)3.365 (4)166 (3)
O1—H1O···N1iv0.822.332.930 (4)130.
O1—H1O···N2iv0.822.263.032 (4)158.
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z.
Acknowledgements top

We thank the National Natural Science Foundation of China (No. 20872030), the Foundation of Heilongjiang Education Committee (No. 12511383), the Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, the College of Heilongjiang Province and Heilongjiang University, China, for supporting this study.

references
References top

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cong, F. D., Yu, F. Y., Wei, Z. & Ng, S. W. (2009). Acta Cryst. E65, m1544.

Liu, G. X., Huang, R. Y., Xu, H., Kong, X. J., Huang, L. F., Zhu, K. & Ren, X. M. (2008). Polyhedron, 27, 2327–2336.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, X. L., Gao, Q., Liu, G. C., Lin, H. Y., Tian, A. X. & Li, J. (2011). Inorg. Chem. Commun., 14, 745–748.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.