organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-(2,3,4-Trifluorophenyl)pyrrolidine-1-carboxamide

Shuchen Pei, Jie Li, Boyi Qu, Li Hai and Yong Wu*

Key Laboratory of Drug Targeting of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China Correspondence e-mail: wyong@scu.edu.cn

Received 19 November 2011; accepted 29 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.151; data-to-parameter ratio = 13.9.

In the title compound, $C_{11}H_{11}F_3N_2O$, a urea derivative, the best plane through the pyrrole ring makes a dihedral angle of 9.69 (13)° with the benzene ring. The amino H atom is shielded, so that it is not involved in any hydrogen-bonding interactions.

Related literature

For background to this class of compounds, see Zheng *et al.* (2010).

Experimental

Crystal data

 $C_{11}H_{11}F_3N_2O$ $M_r = 244.22$ Monoclinic, $P2_1/n$ a = 6.0708 (4) Å b = 24.2124 (15) Å c = 7.4232 (6) Å $\beta = 100.508 (7)^{\circ}$ $V = 1072.83 (13) \text{ Å}^{3}$ Z = 4

Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^{-1}$ T = 293 K $0.35 \times 0.35 \times 0.25 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Eos diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) $T_{\min} = 0.964, T_{\max} = 1.000$

4465 measured reflections 2190 independent reflections 1374 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.018$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.151$ S = 1.042190 reflections 158 parameters

H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.24 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.22 \text{ e Å}^{-3}$

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

The authors thank the NSFC (81072532) for financial support and Professor Zhihua Mao (Sichuan University) for the X-ray measurements

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5716).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zheng, Q.-Z., Cheng, K., Zhang, X.-M., Liu, K., Jiao, Q.-C. & Zhu, H.-L. (2010). Eur. J. Med. Chem. 45, 3207–3212.

supporting information

Acta Cryst. (2012). E68, o12 [doi:10.1107/S1600536811051385]

N-(2,3,4-Trifluorophenyl)pyrrolidine-1-carboxamide

Shuchen Pei, Jie Li, Boyi Qu, Li Hai and Yong Wu

S1. Comment

The compound *N*-(2,3,4-trifluorophenyl)pyrrolidine-1-carboxamide is one of urea derivatives. It has been established that urea derivatives have got a significant placein modern medicinal chemistry. Urea derivatives have been reported in the literature as anticancer agent, anticonvulsant, CXCR3 antagonist, antibacterial and so on. Our interests in synthesizing urea derivatives prompted us to develop an efficient methodology for synthesizing *N*-(2,3,4-trifluorophenyl)-pyrrolidine-1-carboxamide. In our synthetic work, we obtained the title compound, and its crystal structure is reported here. The three fluorine atoms of the attached benzene ring are close to being coplanar with the ring, whereas the pyrrole ring is not coplanar with the benzene ring.

S2. Experimental

The title compound was obtained as a derivative of urea. To a solution of triphosgene (350 mg, 1.19 mmol) and triethylamine (680 mg, 6.80 mmol) in anhydrous acetonitrile (5 ml) at ice bath, the solution of 2,3,4-trifluoroaniline (500 mg, 3.40 mmol) and triethylamine (680 mg, 6.80 mmol) in anhydrous acetonitrile (5 ml) were added dropwise. The mixture was stirred for 1 h. And then the solition of tetrahydropyrrole (240 mg,3.40 mmol) and triethylamine (680 mg, 6.80 mmol) in anhydrous acetonitrile (5 ml) were added dropwise. The reaction mixture was then removed from the cooling bath and stirred at room temperature overnight. On completion of the reaction, the mixture was poured into water. The aqueous layer was extracted with ethyl acetate and the organic layer was separated. The organic layers were washed with brine and dried over sodium sulfate, filtered, and concentrated *in vacuo*. The purification of the residue by silica gel column chromatography eluting with EtOAc-petroleum ether (1:10) yielded the white solid 660 mg (yield 86.7%) of *N*-(2,3,4-trifluorophenyl)pyrrolidine-1-carboxamide. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation in ethyl acetate at room temperature.

S3. Refinement

H atoms bonded to C were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$. The amino H atom was freely refined.

Figure 1The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Figure 2
A packing diagram for the title compound.

N-(2,3,4-Trifluorophenyl)pyrrolidine-1-carboxamide

Crystal data $C_{11}H_{11}F_3N_2O$ $M_r = 244.22$ Monoclinic, $P2_1/n$

a = 6.0708 (4) Åb = 24.2124 (15) Å

c = 7.4232 (6) Å

 $\beta = 100.508 (7)^{\circ}$

 $V = 1072.83 (13) \text{ Å}^3$

Z = 4

F(000) = 504 $D_{\rm x} = 1.512~{\rm Mg~m^{-3}}$ Mo $K\alpha$ radiation, $\lambda = 0.7107~{\rm Å}$ Cell parameters from 1445 reflections $\theta = 2.9 - 28.9^{\circ}$ $\mu = 0.13~{\rm mm^{-1}}$ $T = 293~{\rm K}$ Block, colorless

 $0.35\times0.35\times0.25~mm$

Acta Cryst. (2012). E**68**, o12

Data collection

Oxford Diffraction Xcalibur Eos

diffractometer

Radiation source: Enhance (Mo) X-ray Source

Graphite monochromator

Detector resolution: 16.0874 pixels mm⁻¹

 ω scans

Absorption correction: multi-scan

(CrysAlis PRO; Oxford Diffraction, 2007)

 $T_{\min} = 0.964, T_{\max} = 1.000$

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$

 $wR(F^2) = 0.151$

S = 1.04

2190 reflections

158 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

4465 measured reflections 2190 independent reflections 1374 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.018$

 $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$

 $h = -7 \rightarrow 6$

 $k = -30 \rightarrow 27$

 $l = -8 \rightarrow 9$

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H atoms treated by a mixture of independent

and constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.055P)^2 + 0.3084P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} \leq 0.001$

 $\Delta \rho_{\text{max}} = 0.24 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.22 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.1373 (2)	-0.04074 (6)	0.1339 (2)	0.0855 (6)	
F2	0.2120(3)	-0.14684(7)	0.2355 (3)	0.0987 (7)	
F3	0.6185 (3)	-0.17950(6)	0.4120(2)	0.0908 (6)	
O1	0.7849 (3)	0.08144 (8)	0.2954(3)	0.0827 (6)	
N1	0.4504 (4)	0.03783 (9)	0.2033 (3)	0.0586 (6)	
H1	0.325 (4)	0.0407 (10)	0.159 (4)	0.061 (9)*	
N2	0.4818 (3)	0.13161 (8)	0.1745 (3)	0.0577 (6)	
C1	0.3428 (4)	-0.05587(11)	0.2237(3)	0.0577 (6)	
C2	0.3786 (5)	-0.10989(11)	0.2741 (4)	0.0626 (7)	
C3	0.5855 (5)	-0.12546 (11)	0.3645 (4)	0.0649 (7)	
C4	0.7542 (5)	-0.08815 (11)	0.4034 (4)	0.0676 (7)	
H4	0.8950	-0.0992	0.4640	0.081*	
C5	0.7159 (4)	-0.03335(11)	0.3522 (4)	0.0645 (7)	
H5	0.8315	-0.0078	0.3799	0.077*	
C6	0.5075 (4)	-0.01615 (10)	0.2603 (3)	0.0521 (6)	

supporting information

C7	0.5845 (4)	0.08395 (10)	0.2289(3)	0.0558 (6)	
C8	0.2441 (4)	0.13970 (10)	0.1006 (4)	0.0637 (7)	
H8A	0.1513	0.1238	0.1807	0.076*	
H8B	0.2032	0.1234	-0.0203	0.076*	
C9	0.2219 (5)	0.20173 (12)	0.0924 (5)	0.0955 (11)	
H9A	0.1181	0.2128	-0.0170	0.115*	
H9B	0.1664	0.2153	0.1987	0.115*	
C10	0.4431 (5)	0.22379 (13)	0.0893 (5)	0.0987 (11)	
H10A	0.4614	0.2594	0.1501	0.118*	
H10B	0.4652	0.2284	-0.0359	0.118*	
C11	0.6072 (5)	0.18321 (11)	0.1877 (4)	0.0744 (8)	
H11A	0.7371	0.1800	0.1293	0.089*	
H11B	0.6562	0.1939	0.3146	0.089*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0581 (10)	0.0683 (10)	0.1208 (14)	-0.0094 (8)	-0.0083 (9)	0.0058 (9)
F2	0.0865 (13)	0.0638 (10)	0.1378 (17)	-0.0188 (9)	-0.0004 (11)	0.0062 (10)
F3	0.1087 (15)	0.0639 (11)	0.0979 (14)	0.0123 (9)	0.0135 (10)	0.0105 (9)
O1	0.0462 (11)	0.0746 (13)	0.1207 (18)	-0.0060(9)	-0.0020 (10)	0.0012 (11)
N1	0.0477 (13)	0.0583 (14)	0.0662 (15)	-0.0060(11)	0.0010(11)	-0.0014 (10)
N2	0.0468 (12)	0.0521 (12)	0.0723 (14)	-0.0087 (10)	0.0060 (10)	-0.0041 (10)
C1	0.0524 (15)	0.0623 (16)	0.0570 (15)	-0.0028(13)	0.0064 (11)	-0.0034 (12)
C2	0.0659 (17)	0.0541 (16)	0.0686 (17)	-0.0082 (14)	0.0147 (13)	-0.0042 (13)
C3	0.082(2)	0.0562 (16)	0.0581 (16)	0.0061 (15)	0.0158 (14)	-0.0003 (12)
C4	0.0633 (17)	0.0739 (18)	0.0628 (17)	0.0100 (15)	0.0039 (13)	0.0012 (14)
C5	0.0563 (16)	0.0664 (17)	0.0675 (17)	-0.0033 (14)	0.0029 (12)	-0.0041 (13)
C6	0.0538 (15)	0.0576 (15)	0.0451 (14)	-0.0014 (12)	0.0097 (11)	-0.0049(11)
C7	0.0506 (15)	0.0584 (15)	0.0588 (15)	-0.0065 (13)	0.0112 (11)	-0.0061 (12)
C8	0.0516 (15)	0.0632 (16)	0.0736 (18)	-0.0067(13)	0.0045 (12)	0.0055 (13)
C9	0.069(2)	0.069(2)	0.144(3)	-0.0005 (17)	0.007(2)	0.0207 (19)
C10	0.082(2)	0.0619 (19)	0.146 (3)	-0.0105 (18)	0.003(2)	0.0102 (19)
C11	0.0585 (17)	0.0621 (17)	0.101(2)	-0.0144(14)	0.0086 (15)	-0.0058(15)

Geometric parameters (Å, °)

F1—C1	1.353 (3)	C4—C5	1.388 (4)
F2—C2	1.341 (3)	C5—H5	0.9300
F3—C3	1.360 (3)	C5—C6	1.387 (3)
O1—C7	1.228 (3)	C8—H8A	0.9700
N1—H1	0.77 (3)	C8—H8B	0.9700
N1—C6	1.398 (3)	C8—C9	1.508 (4)
N1—C7	1.375 (3)	C9—H9A	0.9700
N2—C7	1.338 (3)	C9—H9B	0.9700
N2—C8	1.461 (3)	C9—C10	1.449 (4)
N2—C11	1.457 (3)	C10—H10A	0.9700
C1—C2	1.367 (4)	C10—H10B	0.9700

supporting information

C2—C3 1.365 (4) C11—H11A 0.97 C3—C4 1.357 (4) C11—H11B 0.97 C4—H4 0.9300 N2—C7—N1 115 C6—N1—H1 112.6 (19) N2—C7—N1 115 C7—N1—H1 120 (2) N2—C8—H8A 111 C7—N1—C6 127.6 (2) N2—C8—H8B 111 C7—N2—C8 127.1 (2) N2—C8—C9 102 C7—N2—C11 120.7 (2) H8A—C8—H8B 109 C11—N2—C8 112.3 (2) C9—C8—H8A 111 F1—C1—C2 118.7 (2) C9—C8—H8B 111 F1—C1—C6 118.6 (2) C8—C9—H9A 110 C2—C1—C6 122.7 (2) C8—C9—H9B 110 F2—C2—C1 120.2 (2) H9A—C9—H9B 106 C3—C2—C1 119.0 (2) C10—C9—C8 106 C3—C2—C1 119.0 (2) C10—C9—H9A 110 C4—C3—F3 121.0 (3) C9—C10—H10A 110 C4—C3—C2 120.8 (3) C9—C10—H10B 110	3 (2)
C3—C4 1.357 (4) C11—H11B 0.97 C4—H4 0.9300 N2—C7—N1 115 C6—N1—H1 112.6 (19) N2—C8—H8A 111 C7—N1—C6 127.6 (2) N2—C8—H8B 111 C7—N2—C8 127.1 (2) N2—C8—C9 102 C7—N2—C11 120.7 (2) H8A—C8—H8B 109 C11—N2—C8 112.3 (2) C9—C8—H8A 111 F1—C1—C2 118.7 (2) C9—C8—H8B 111 F1—C1—C6 118.6 (2) C8—C9—H9A 110 C2—C1—C6 122.7 (2) C8—C9—H9B 110 F2—C2—C1 120.2 (2) H9A—C9—H9B 108 F2—C2—C3 120.7 (2) C10—C9—C8 106 C3—C2—C1 119.0 (2) C10—C9—H9A 110 F3—C3—C2 118.2 (3) C10—C9—H9B 110 C4—C3—F3 121.0 (3) C9—C10—H10A 110 C4—C3—C3 120.8 (3) C9—C10—H10B 110 C3—C4—H4 120.1 C9—C10—H10B 108 C5—C4—H4 120.1 C11—C10—H10B 108	3 (2)
C4—H4 0.9300 C6—N1—H1 112.6 (19) N2—C7—N1 115. C7—N1—H1 120 (2) N2—C8—H8A 111. C7—N1—C6 127.6 (2) N2—C8—H8B 111. C7—N2—C8 127.1 (2) N2—C8—C9 102. C7—N2—C11 120.7 (2) H8A—C8—H8B 109. C11—N2—C8 112.3 (2) C9—C8—H8A 111. F1—C1—C2 118.7 (2) C9—C8—H8B 111. F1—C1—C6 118.6 (2) C8—C9—H9A 110. C2—C1—C6 122.7 (2) C8—C9—H9B 110. F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C5—C4—H4 120.1 C11—C10—H10B 108.	3 (2)
C6—N1—H1 112.6 (19) N2—C7—N1 115. C7—N1—H1 120 (2) N2—C8—H8A 111. C7—N1—C6 127.6 (2) N2—C8—H8B 111. C7—N2—C8 127.1 (2) N2—C8—C9 102. C7—N2—C11 120.7 (2) H8A—C8—H8B 109. C11—N2—C8 112.3 (2) C9—C8—H8A 111. F1—C1—C2 118.7 (2) C9—C8—H8B 111. F1—C1—C6 118.6 (2) C8—C9—H9A 110. C2—C1—C6 122.7 (2) C8—C9—H9B 110. F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. C3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—H10B 106. C5—C4—H4 120.1 C11—C10—H10A 110.	2
C7—N1—H1 120 (2) N2—C8—H8A 111. C7—N1—C6 127.6 (2) N2—C8—H8B 111. C7—N2—C8 127.1 (2) N2—C8—C9 102. C7—N2—C11 120.7 (2) H8A—C8—H8B 109. C11—N2—C8 112.3 (2) C9—C8—H8A 111. F1—C1—C2 118.7 (2) C9—C8—H8B 111. F1—C1—C6 118.6 (2) C8—C9—H9A 110. C2—C1—C6 122.7 (2) C8—C9—H9B 110. F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C5—C4—H4 120.1 C11—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10B 110.	2
C7—N1—H1 120 (2) N2—C8—H8A 111. C7—N1—C6 127.6 (2) N2—C8—H8B 111. C7—N2—C8 127.1 (2) N2—C8—C9 102. C7—N2—C11 120.7 (2) H8A—C8—H8B 109. C11—N2—C8 112.3 (2) C9—C8—H8A 111. F1—C1—C2 118.7 (2) C9—C8—H8B 111. F1—C1—C6 118.6 (2) C8—C9—H9A 110. C2—C1—C6 122.7 (2) C8—C9—H9B 110. F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C5—C4—H4 120.1 C11—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10B 110.	2
C7—N1—C6 127.6 (2) N2—C8—H8B 111. C7—N2—C8 127.1 (2) N2—C8—C9 102. C7—N2—C11 120.7 (2) H8A—C8—H8B 109. C11—N2—C8 112.3 (2) C9—C8—H8A 111. F1—C1—C2 118.7 (2) C9—C8—H8B 111. F1—C1—C6 118.6 (2) C8—C9—H9A 110. C2—C1—C6 122.7 (2) C8—C9—H9B 110. F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—H4 120.1 C11—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10B 110.	
C7—N2—C8 127.1 (2) N2—C8—C9 102 C7—N2—C11 120.7 (2) H8A—C8—H8B 109 C11—N2—C8 112.3 (2) C9—C8—H8A 111 F1—C1—C2 118.7 (2) C9—C8—H8B 111 F1—C1—C6 118.6 (2) C8—C9—H9A 110 C2—C1—C6 122.7 (2) C8—C9—H9B 110 F2—C2—C1 120.2 (2) H9A—C9—H9B 108 F2—C2—C3 120.7 (2) C10—C9—C8 106 C3—C2—C1 119.0 (2) C10—C9—H9A 110 F3—C3—C2 118.2 (3) C10—C9—H9B 110 C4—C3—F3 121.0 (3) C9—C10—H10A 110 C4—C3—C2 120.8 (3) C9—C10—H10B 110 C3—C4—H4 120.1 C9—C10—H10B 108 C5—C4—H4 120.1 C11—C10—H10A 110	,
C7—N2—C11 120.7 (2) H8A—C8—H8B 109.0 C11—N2—C8 112.3 (2) C9—C8—H8A 111. F1—C1—C2 118.7 (2) C9—C8—H8B 111. F1—C1—C6 118.6 (2) C8—C9—H9A 110. C2—C1—C6 122.7 (2) C8—C9—H9B 110. F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	
C11—N2—C8 112.3 (2) C9—C8—H8A 111. F1—C1—C2 118.7 (2) C9—C8—H8B 111. F1—C1—C6 118.6 (2) C8—C9—H9A 110. C2—C1—C6 122.7 (2) C8—C9—H9B 110. F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	9 (2)
F1—C1—C2 118.7 (2) C9—C8—H8B 111. F1—C1—C6 118.6 (2) C8—C9—H9A 110. C2—C1—C6 122.7 (2) C8—C9—H9B 110. F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	1
F1—C1—C6 118.6 (2) C8—C9—H9A 110. C2—C1—C6 122.7 (2) C8—C9—H9B 110. F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	2
C2—C1—C6 122.7 (2) C8—C9—H9B 110. F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	
F2—C2—C1 120.2 (2) H9A—C9—H9B 108. F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	}
F2—C2—C3 120.7 (2) C10—C9—C8 106. C3—C2—C1 119.0 (2) C10—C9—H9A 110. F3—C3—C2 118.2 (3) C10—C9—H9B 110. C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	}
C3—C2—C1 119.0 (2) C10—C9—H9A 110.0 F3—C3—C2 118.2 (3) C10—C9—H9B 110.0 C4—C3—F3 121.0 (3) C9—C10—H10A 110.0 C4—C3—C2 120.8 (3) C9—C10—H10B 110.0 C3—C4—H4 120.1 C9—C10—C11 106.0 C3—C4—C5 119.7 (3) H10A—C10—H10B 108.0 C5—C4—H4 120.1 C11—C10—H10A 110.0	ó
F3—C3—C2 118.2 (3) C10—C9—H9B 110.0 C4—C3—F3 121.0 (3) C9—C10—H10A 110.0 C4—C3—C2 120.8 (3) C9—C10—H10B 110.0 C3—C4—H4 120.1 C9—C10—C11 106.0 C3—C4—C5 119.7 (3) H10A—C10—H10B 108.0 C5—C4—H4 120.1 C11—C10—H10A 110.0	9(2)
C4—C3—F3 121.0 (3) C9—C10—H10A 110. C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	}
C4—C3—C2 120.8 (3) C9—C10—H10B 110. C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	}
C3—C4—H4 120.1 C9—C10—C11 106. C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	ļ
C3—C4—C5 119.7 (3) H10A—C10—H10B 108. C5—C4—H4 120.1 C11—C10—H10A 110.	ļ
C5—C4—H4 120.1 C11—C10—H10A 110.	7 (3)
	ó
C4_C5_H5 119.5 C11_C10_H10B 110	ļ
C+ C5 115 1110D 1110D	ļ
C6—C5—C4 120.9 (3) N2—C11—C10 103.	7(2)
C6—C5—H5 119.5 N2—C11—H11A 111.)
C1—C6—N1 117.5 (2) N2—C11—H11B 111.)
C1—C6—C5 116.8 (2) C10—C11—H11A 111.)
C5—C6—N1 125.7 (2) C10—C11—H11B 111.)
O1—C7—N1 122.3 (2) H11A—C11—H11B 109.)
O1—C7—N2 122.5 (2)	

Hydrogen-bond geometry (Å, o)

D—H···A	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N1—H1···F1	0.77 (3)	2.27 (3)	2.672 (3)	113 (2)