supplementary materials


bt5729 scheme

Acta Cryst. (2012). E68, m1    [ doi:10.1107/S160053681105080X ]

cis-Bis(2,2'-bipyrimidine-[kappa]2N1,N1')diiodidomanganese(II)

K. Ha

Abstract top

The asymmetric unit of the title complex, [MnI2(C8H6N4)2], contains one half of a neutral MnII complex, with the entire molecule completed by the application of twofold symmetry. The MnII ion is six-coordinated in a distorted octahedral environment defined by four N atoms of the two chelating 2,2'-bipyrimidine (bpym) ligands and two I- anions in a cis-N4I2 coordination geometry. The dihedral angle between the least-squares planes of the two bpym ligands (r.m.s deviation for all non-H atoms = 0.063 Å) is 85.04 (6)°. In the crystal, complex molecules are connected by C-H...N and C-H...I hydrogen bonds, forming a three-dimensional network. Molecules are stacked in columns along the a axis. Along the c axis, successive molecules stack in the opposite directions.

Comment top

The asymmetric unit of the title complex, [MnI2(bpym)2] (bpym = 2,2'-bipyrimidine, C8H6N4), contains one half of a neutral MnII complex (Fig. 1). The complex is disposed about a twofold rotation axis running in the [010] direction passing through the Mn1 atom. The MnII ion is six-coordinated in a distorted octahedral environment defined by four N atoms of the two chelating bpym ligands and two I- anions in a cis-N4I2 coordination geometry. The structure is quite different from the previously reported complexes [MnI(bpym)2(H2O)]I.xH2O obtained from a methanol (x = 2; Ha, 2011a) or a 2-butanone solution (x = 1; Ha, 2011b) of the same reaction product, in which two bpym ligands, an I- anion and a water ligand are coordinated to the MnII ion, respectively.

The tight N—Mn—N chelating angles and I—I repelling (Table 1) contribute the distortion of ocataheron, which results in non-linear trans axes (<N1—Mn1—N1i = 156.60 (15)° and <I1—Mn1—N4 = 164.40 (8)°; symmetry code i: 1 - x, y, 1/2 - z). Because the Mn—N bond lengths are nearly equivalent (Table 1), the different trans effects of the I and N atoms cannot be observed reliably. The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.098 (3) Å] is 85.04 (6)°. In the crystal, the complex molecules are connected by intermolecular C—H···N and C—H···I hydrogen bonds, forming a three-dimensional network (Fig. 2, Table 2). Molecules are stacked in columns along the a axis. When viewed down the c axis, successive molecules stack in the opposite directions. In the columns, several inter- and intramolecular π-π interactions between adjacent pyrimidine rings are present, the shortest ring centroid-centroid distance being 3.853 (2) Å.

Related literature top

For related crystal structures of [MnI(bpym)2(H2O)]I.xH2O (x = 2, 1), see: Ha (2011a,b).

Experimental top

To a solution of 2,2'-bipyrimidine (0.1587 g, 1.003 mmol) in acetone (40 ml) was added MnI2 (0.1540 g, 0.499 mmol) and refluxed for 3 h. The formed precipitate was separated by filtration, washed with acetone and dried at 50 °C, to give a yellow powder (0.0701 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a dimethyl sulfoxide (DMSO) solution at 90 °C.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (0.94 e Å-3) and the deepest hole (-0.50 e Å-3) in the difference Fourier map are located 1.35 Å and 0.83 Å from the atoms N3 and C2, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 40% probability level for non-H atoms. Unlabelled atoms are related to the reference atoms by the (1 - x, y, 1/2 - z) symmetry transformation.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.
cis-Bis(2,2'-bipyrimidine- κ2N1,N1')diiodidomanganese(II) top
Crystal data top
[MnI2(C8H6N4)2]F(000) = 1180
Mr = 625.08Dx = 2.050 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3917 reflections
a = 8.2841 (4) Åθ = 2.9–28.1°
b = 13.8442 (7) ŵ = 3.72 mm1
c = 17.8243 (9) ÅT = 200 K
β = 97.822 (1)°Block, yellow
V = 2025.19 (17) Å30.34 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2477 independent reflections
Radiation source: fine-focus sealed tube1923 reflections with I > 2σ(I)
graphiteRint = 0.023
φ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1011
Tmin = 0.863, Tmax = 1.000k = 1818
7130 measured reflectionsl = 2313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0197P)2 + 5.0272P]
where P = (Fo2 + 2Fc2)/3
2477 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[MnI2(C8H6N4)2]V = 2025.19 (17) Å3
Mr = 625.08Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.2841 (4) ŵ = 3.72 mm1
b = 13.8442 (7) ÅT = 200 K
c = 17.8243 (9) Å0.34 × 0.22 × 0.17 mm
β = 97.822 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2477 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1923 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.023
7130 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.94 e Å3
S = 1.10Δρmin = 0.50 e Å3
2477 reflectionsAbsolute structure: ?
123 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.28328 (5)0.25000.03038 (18)
I10.68736 (3)0.409360 (18)0.170347 (15)0.03768 (9)
N10.2923 (4)0.2495 (2)0.15380 (16)0.0316 (7)
N20.2149 (4)0.1486 (2)0.04676 (18)0.0372 (7)
N30.4761 (4)0.0785 (2)0.4388 (2)0.0444 (9)
N40.4157 (4)0.1610 (2)0.32184 (18)0.0349 (7)
C10.1449 (5)0.2901 (3)0.1444 (2)0.0359 (8)
H10.12040.33920.17830.043*
C20.0271 (5)0.2616 (3)0.0861 (2)0.0421 (10)
H20.07800.29030.07890.051*
C30.0689 (5)0.1895 (3)0.0387 (2)0.0408 (9)
H30.01050.16820.00130.049*
C40.3207 (4)0.1809 (2)0.10433 (19)0.0302 (8)
C50.5128 (4)0.1365 (3)0.3852 (2)0.0322 (8)
C60.3261 (5)0.0392 (3)0.4279 (3)0.0478 (11)
H60.29380.00210.46570.057*
C70.2193 (5)0.0569 (3)0.3644 (2)0.0448 (10)
H70.11520.02710.35630.054*
C80.2688 (5)0.1201 (3)0.3123 (2)0.0411 (9)
H80.19560.13490.26800.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0302 (4)0.0301 (4)0.0306 (4)0.0000.0034 (3)0.000
I10.03561 (15)0.03743 (15)0.04207 (16)0.00468 (11)0.01272 (11)0.00650 (11)
N10.0328 (16)0.0308 (16)0.0310 (16)0.0042 (13)0.0041 (13)0.0004 (13)
N20.0335 (17)0.0430 (18)0.0345 (18)0.0038 (14)0.0031 (14)0.0054 (14)
N30.0395 (19)0.049 (2)0.044 (2)0.0127 (16)0.0022 (16)0.0159 (16)
N40.0351 (17)0.0333 (16)0.0356 (18)0.0060 (14)0.0023 (14)0.0003 (14)
C10.035 (2)0.036 (2)0.038 (2)0.0031 (17)0.0107 (16)0.0092 (17)
C20.030 (2)0.051 (2)0.045 (2)0.0079 (18)0.0051 (17)0.003 (2)
C30.035 (2)0.051 (2)0.035 (2)0.0030 (18)0.0010 (17)0.0035 (18)
C40.036 (2)0.0299 (18)0.0252 (18)0.0017 (15)0.0047 (15)0.0020 (15)
C50.0315 (19)0.0300 (18)0.036 (2)0.0062 (15)0.0064 (16)0.0026 (16)
C60.048 (3)0.045 (2)0.051 (3)0.013 (2)0.009 (2)0.013 (2)
C70.035 (2)0.042 (2)0.056 (3)0.0135 (18)0.004 (2)0.001 (2)
C80.038 (2)0.042 (2)0.042 (2)0.0096 (18)0.0002 (18)0.0008 (18)
Geometric parameters (Å, °) top
Mn1—N4i2.289 (3)N4—C51.338 (5)
Mn1—N42.289 (3)C1—C21.383 (5)
Mn1—N12.305 (3)C1—H10.9500
Mn1—N1i2.305 (3)C2—C31.381 (6)
Mn1—I12.8410 (5)C2—H20.9500
Mn1—I1i2.8410 (5)C3—H30.9500
N1—C11.334 (5)C4—C5i1.498 (5)
N1—C41.339 (4)C5—C4i1.498 (5)
N2—C31.325 (5)C6—C71.361 (6)
N2—C41.332 (5)C6—H60.9500
N3—C51.315 (5)C7—C81.378 (6)
N3—C61.347 (5)C7—H70.9500
N4—C81.332 (5)C8—H80.9500
N4i—Mn1—N484.55 (16)N1—C1—H1119.5
N4i—Mn1—N171.78 (10)C2—C1—H1119.5
N4—Mn1—N190.72 (11)C3—C2—C1117.1 (4)
N4i—Mn1—N1i90.72 (11)C3—C2—H2121.4
N4—Mn1—N1i71.78 (10)C1—C2—H2121.4
N1—Mn1—N1i156.60 (15)N2—C3—C2122.9 (4)
N4i—Mn1—I186.90 (8)N2—C3—H3118.5
N4—Mn1—I1164.40 (8)C2—C3—H3118.5
N1—Mn1—I198.98 (7)N2—C4—N1126.1 (3)
N1i—Mn1—I195.35 (7)N2—C4—C5i117.2 (3)
N4i—Mn1—I1i164.40 (8)N1—C4—C5i116.7 (3)
N4—Mn1—I1i86.90 (8)N3—C5—N4126.6 (3)
N1—Mn1—I1i95.35 (7)N3—C5—C4i117.4 (3)
N1i—Mn1—I1i98.98 (7)N4—C5—C4i116.0 (3)
I1—Mn1—I1i104.19 (3)N3—C6—C7122.0 (4)
C1—N1—C4117.1 (3)N3—C6—H6119.0
C1—N1—Mn1125.8 (2)C7—C6—H6119.0
C4—N1—Mn1117.0 (2)C6—C7—C8117.2 (4)
C3—N2—C4115.8 (3)C6—C7—H7121.4
C5—N3—C6116.2 (3)C8—C7—H7121.4
C8—N4—C5115.7 (3)N4—C8—C7122.2 (4)
C8—N4—Mn1125.9 (3)N4—C8—H8118.9
C5—N4—Mn1117.7 (2)C7—C8—H8118.9
N1—C1—C2120.9 (3)
N4i—Mn1—N1—C1176.2 (3)Mn1—N1—C1—C2177.5 (3)
N4—Mn1—N1—C192.1 (3)N1—C1—C2—C30.3 (6)
N1i—Mn1—N1—C1132.8 (3)C4—N2—C3—C20.5 (6)
I1—Mn1—N1—C1100.1 (3)C1—C2—C3—N20.7 (6)
I1i—Mn1—N1—C15.2 (3)C3—N2—C4—N10.1 (6)
N4i—Mn1—N1—C41.6 (2)C3—N2—C4—C5i179.7 (3)
N4—Mn1—N1—C485.6 (3)C1—N1—C4—N20.5 (5)
N1i—Mn1—N1—C444.9 (2)Mn1—N1—C4—N2177.4 (3)
I1—Mn1—N1—C482.1 (2)C1—N1—C4—C5i179.4 (3)
I1i—Mn1—N1—C4172.6 (2)Mn1—N1—C4—C5i2.7 (4)
N4i—Mn1—N4—C890.9 (3)C6—N3—C5—N40.8 (6)
N1—Mn1—N4—C819.2 (3)C6—N3—C5—C4i179.7 (4)
N1i—Mn1—N4—C8176.6 (3)C8—N4—C5—N31.6 (6)
I1—Mn1—N4—C8148.0 (3)Mn1—N4—C5—N3169.7 (3)
I1i—Mn1—N4—C876.1 (3)C8—N4—C5—C4i178.9 (3)
N4i—Mn1—N4—C598.8 (3)Mn1—N4—C5—C4i9.8 (4)
N1—Mn1—N4—C5170.5 (3)C5—N3—C6—C71.2 (7)
N1i—Mn1—N4—C56.3 (3)N3—C6—C7—C82.3 (7)
I1—Mn1—N4—C541.8 (5)C5—N4—C8—C70.3 (6)
I1i—Mn1—N4—C594.2 (3)Mn1—N4—C8—C7170.1 (3)
C4—N1—C1—C20.2 (5)C6—C7—C8—N41.5 (7)
Symmetry codes: (i) −x+1, y, −z+1/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N3ii0.952.603.151 (5)117.
C6—H6···N2iii0.952.623.554 (5)166.
C7—H7···I1iv0.952.973.917 (4)173.
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x, −y, z+1/2; (iv) −x+1/2, y−1/2, −z+1/2.
Table 1
Selected geometric parameters (Å, °)
top
Mn1—N42.289 (3)Mn1—I12.8410 (5)
Mn1—N12.305 (3)
N4i—Mn1—N171.78 (10)I1—Mn1—I1i104.19 (3)
Symmetry codes: (i) −x+1, y, −z+1/2.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C6—H6···N3ii0.952.603.151 (5)117.
C6—H6···N2iii0.952.623.554 (5)166.
C7—H7···I1iv0.952.973.917 (4)173.
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x, −y, z+1/2; (iv) −x+1/2, y−1/2, −z+1/2.
Acknowledgements top

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

references
References top

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Ha, K. (2011a). Acta Cryst. E67, m1414.

Ha, K. (2011b). Acta Cryst. E67, m1453.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.