supplementary materials


bt5735 scheme

Acta Cryst. (2012). E68, o11    [ doi:10.1107/S1600536811051440 ]

1'-Methyl-4'-(4-methylphenyl)dispiro[1-benzopyran-3(4H),3'-pyrrolidine-2',3''-indoline]-2,2''-dione

D. Lakshmanan, S. Murugavel, D. Kannan and M. Bakthadoss

Abstract top

In the title compound, C27H24N2O3, the pyrroldine ring adopts a twist conformation, while the six-membered pyranone ring of the coumarin ring system is in a sofa conformation. In the crystal, pairs of N-H...O hydrogen bonds link the molecules into inversion R22(8) dimers. These dimers are further connected via C-H...O hydrogen bonds.

Comment top

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

The title compound consists of a pyrrolidine ring connected to a oxindole ring system at C1, a coumarine moiety at C2 and a benzene ring at C3. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig.1.

The pyrrolidine (N1/C1–C4) ring adopts a twist conformation , with twist about the C4—N1 bond; the puckering parameters (Cremer & Pople, 1975), q2 = 0.4216 (14) Å and φ2 = 156.9 (2)°, and asymmetry parameters (Duax et al., 1976) ΔC2[C4—N1] = 5.0 Å. The six membered pyranone ring (O2/C2/C13/C14/C19/C20) of the coumarine moiety adopts screw-boat conformation as indicated from the puckering parameters: Q = 0.5296 (15) Å, θ = 65.9 (2)° and φ = 215.9 (2)°. The oxindole unit (N2/C1/C6–C12) is essentially planar [maximum deviation = 0.048 (1) Å for the C1 atom] and is oriented at a dihedral angles of 87.1 (1)° and 28.6 (1)°, respectively, with the pyrrolidine and coumarine rings. The sum of angles at N1 of the pyrrolidine ring (337°) is in accordance with sp3 hybridization, and the sum of angles at N2 of the indole moiety (360°) is in accordance with sp2 hybridization. The geometric parameters of the title molecule agrees well with those reported for similar structures (Selvanayagam et al., 2011; Ali et al., 2010).

Ihe molecular structure is stabilized by C3—H3···O3 and C13—H13A···O1 intramolecular hydrogen bonds, forming S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995) (Table 1). The molecular structure is further stabilized by an intramolecular ππ interactions with Cg1—Cg2 seperation of 3.539 (1) Å. (Fig. 2; Cg1 and Cg2 are the centroids of the (N2/C1/C6/C7/C12) indole ring, (C14–C19) benzene ring, respectively). The crystal packing is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds. The molecules at x, y, z and 2-x, 2-y, -z are linked by N2—H2···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers. This dimers are further connected by C5—H5B···O3 hydrogen bonds forming supramolecular zig zag chains along the c axis (Fig. 3).

Related literature top

For applications of pyrrolidine derivatives, see: Huryn et al. (1991 ); Suzuki et al. (1994); Waldmann (1995). For ring puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax et al. (1976). For closely related pyrrolidine structures, see: Selvanayagam et al. (2011); Ali et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of E-3-(4-methylbenzylidene)chroman-2-one (0.125 g, 0.5 mmol), isatin (0.08 g, 0.55 mmol) and N- methylglycine (0.025 g, 0.55 mmol) in toluene (5 ml) as solvent was allowed to reflux for 6 hours. After work up, the crude mass was purified by column chromatography to yield the pure product (0.195 g, 92% yield). The compound was recrystallized from ethyl acetate solvent. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethylacetate solution at room temperature.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å and and C—H = 0.93–0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. A view of the π···π interactions (dotted lines) in the molecular structure of the title compound. Cg1 and Cg2 are the centroids of the (N2/C1/C6/C7/C12) indole ring and (C14–C19) benzene ring, respectively.
[Figure 3] Fig. 3. View of supramolecular zig zag chain in (I) with N—H···O (blue dashed lines) and C—H···O (red dashed lines) hydrogen bonds along the c axis.[ Colour code: O(red), N(blue), C(black) & H(green).
1'-Methyl-4'-(4-methylphenyl)dispiro[1-benzopyran-3(4H),3'- pyrrolidine-2',3''-indoline]-2,2''-dione top
Crystal data top
C27H24N2O3F(000) = 896
Mr = 424.48Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7063 reflections
a = 10.4543 (3) Åθ = 2.0–31.2°
b = 14.6018 (4) ŵ = 0.09 mm1
c = 14.7266 (4) ÅT = 293 K
β = 104.043 (2)°Block, colourless
V = 2180.85 (10) Å30.26 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7055 independent reflections
Radiation source: fine-focus sealed tube4544 reflections with I > 2σ(I)
graphiteRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 31.2°, θmin = 2.0°
ω scansh = 1514
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2121
Tmin = 0.978, Tmax = 0.985l = 2021
30221 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.398P]
where P = (Fo2 + 2Fc2)/3
7055 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C27H24N2O3V = 2180.85 (10) Å3
Mr = 424.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4543 (3) ŵ = 0.09 mm1
b = 14.6018 (4) ÅT = 293 K
c = 14.7266 (4) Å0.26 × 0.23 × 0.18 mm
β = 104.043 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7055 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4544 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.031
30221 measured reflectionsθmax = 31.2°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.153Δρmax = 0.31 e Å3
S = 1.02Δρmin = 0.23 e Å3
7055 reflectionsAbsolute structure: ?
291 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.80511 (12)0.84780 (8)0.09959 (8)0.0326 (2)
C20.80733 (12)0.86879 (8)0.20643 (8)0.0335 (2)
C30.65980 (12)0.89026 (9)0.20385 (9)0.0367 (3)
H30.62070.83330.21970.044*
C40.59877 (13)0.90885 (11)0.10112 (10)0.0449 (3)
H4A0.50420.89890.08580.054*
H4B0.61660.97090.08410.054*
C50.63008 (17)0.84632 (12)0.04637 (10)0.0548 (4)
H5A0.53850.83130.06950.082*
H5B0.68300.80330.07050.082*
H5C0.64590.90700.06620.082*
C60.87724 (13)0.92422 (9)0.05686 (9)0.0383 (3)
C70.97873 (13)0.79028 (9)0.03856 (9)0.0382 (3)
C81.06331 (16)0.72827 (11)0.01407 (11)0.0528 (4)
H81.13110.74700.01250.063*
C91.04343 (19)0.63686 (12)0.03057 (13)0.0626 (5)
H91.10020.59320.01610.075*
C100.94146 (19)0.60908 (10)0.06787 (12)0.0586 (4)
H100.92910.54690.07670.070*
C110.85666 (16)0.67219 (9)0.09259 (10)0.0455 (3)
H110.78710.65320.11720.055*
C120.87840 (13)0.76409 (8)0.07963 (8)0.0348 (3)
C130.90158 (13)0.94596 (10)0.25105 (10)0.0450 (3)
H13A0.87881.00180.21520.054*
H13B0.89310.95730.31420.054*
C141.04058 (14)0.91967 (12)0.25330 (11)0.0520 (4)
C151.13597 (18)0.97997 (16)0.23772 (14)0.0717 (6)
H151.11521.04140.22540.086*
C161.2617 (2)0.9486 (2)0.24059 (18)0.0957 (8)
H161.32590.98930.23130.115*
C171.2920 (2)0.8584 (2)0.2570 (2)0.1000 (9)
H171.37660.83800.25780.120*
C181.19962 (18)0.79673 (18)0.27257 (14)0.0791 (6)
H181.22050.73520.28400.095*
C191.07479 (14)0.82966 (13)0.27055 (10)0.0544 (4)
C200.85238 (14)0.78283 (10)0.26401 (9)0.0418 (3)
C210.63774 (12)0.96203 (9)0.27238 (10)0.0395 (3)
C220.64635 (16)0.93919 (11)0.36474 (11)0.0509 (4)
H220.66570.87910.38430.061*
C230.62671 (17)1.00382 (13)0.42869 (12)0.0584 (4)
H230.63520.98640.49060.070*
C240.59504 (15)1.09288 (12)0.40314 (13)0.0560 (4)
C250.5856 (2)1.11562 (12)0.31114 (15)0.0677 (5)
H250.56371.17540.29150.081*
C260.60777 (18)1.05209 (11)0.24708 (12)0.0576 (4)
H260.60241.07030.18580.069*
C270.5729 (2)1.16348 (15)0.47218 (17)0.0806 (6)
H27A0.61501.21980.46240.121*
H27B0.60951.14200.53470.121*
H27C0.48001.17370.46350.121*
N10.66462 (11)0.84226 (8)0.05524 (8)0.0395 (2)
N20.97478 (11)0.88502 (8)0.02528 (8)0.0430 (3)
H21.02820.91480.00000.052*
O10.84748 (11)1.00547 (6)0.05046 (8)0.0525 (3)
O20.98473 (10)0.76670 (8)0.29036 (7)0.0546 (3)
O30.78215 (12)0.72821 (8)0.28723 (8)0.0607 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0345 (6)0.0302 (6)0.0358 (6)0.0025 (4)0.0135 (5)0.0040 (4)
C20.0307 (6)0.0370 (6)0.0351 (6)0.0028 (5)0.0122 (5)0.0013 (5)
C30.0304 (6)0.0405 (6)0.0426 (7)0.0013 (5)0.0154 (5)0.0039 (5)
C40.0343 (6)0.0549 (8)0.0459 (7)0.0033 (6)0.0108 (6)0.0029 (6)
C50.0553 (9)0.0659 (10)0.0397 (7)0.0022 (7)0.0051 (6)0.0038 (7)
C60.0412 (7)0.0345 (6)0.0434 (7)0.0018 (5)0.0184 (5)0.0055 (5)
C70.0409 (7)0.0403 (7)0.0343 (6)0.0031 (5)0.0110 (5)0.0006 (5)
C80.0489 (8)0.0610 (10)0.0504 (8)0.0121 (7)0.0157 (7)0.0087 (7)
C90.0666 (11)0.0519 (9)0.0654 (10)0.0217 (8)0.0080 (9)0.0158 (8)
C100.0752 (11)0.0342 (7)0.0583 (9)0.0090 (7)0.0007 (8)0.0044 (6)
C110.0564 (8)0.0341 (6)0.0432 (7)0.0043 (6)0.0066 (6)0.0020 (5)
C120.0406 (6)0.0319 (6)0.0315 (6)0.0005 (5)0.0079 (5)0.0013 (4)
C130.0368 (7)0.0510 (8)0.0505 (8)0.0090 (6)0.0172 (6)0.0151 (6)
C140.0345 (7)0.0732 (10)0.0499 (8)0.0107 (7)0.0131 (6)0.0233 (7)
C150.0484 (9)0.0934 (14)0.0787 (12)0.0280 (9)0.0260 (9)0.0347 (10)
C160.0436 (10)0.144 (2)0.1069 (18)0.0334 (13)0.0318 (11)0.0466 (17)
C170.0351 (9)0.155 (3)0.1101 (19)0.0022 (13)0.0174 (10)0.0376 (18)
C180.0427 (9)0.1165 (17)0.0735 (12)0.0177 (10)0.0055 (8)0.0151 (12)
C190.0348 (7)0.0841 (12)0.0422 (8)0.0019 (7)0.0050 (6)0.0116 (7)
C200.0441 (7)0.0485 (8)0.0344 (6)0.0056 (6)0.0126 (5)0.0054 (5)
C210.0312 (6)0.0437 (7)0.0471 (7)0.0024 (5)0.0159 (5)0.0019 (5)
C220.0566 (9)0.0508 (8)0.0516 (8)0.0114 (7)0.0253 (7)0.0060 (6)
C230.0592 (10)0.0708 (11)0.0512 (9)0.0109 (8)0.0248 (8)0.0019 (8)
C240.0411 (8)0.0614 (10)0.0685 (10)0.0054 (7)0.0190 (7)0.0145 (8)
C250.0757 (12)0.0464 (9)0.0819 (13)0.0145 (8)0.0208 (10)0.0001 (8)
C260.0701 (11)0.0485 (9)0.0561 (9)0.0107 (7)0.0189 (8)0.0069 (7)
C270.0697 (12)0.0794 (14)0.0981 (16)0.0079 (10)0.0307 (11)0.0328 (11)
N10.0348 (5)0.0465 (6)0.0364 (5)0.0024 (4)0.0073 (4)0.0027 (4)
N20.0459 (6)0.0404 (6)0.0509 (7)0.0014 (5)0.0274 (5)0.0064 (5)
O10.0583 (6)0.0341 (5)0.0744 (7)0.0032 (4)0.0344 (5)0.0138 (5)
O20.0464 (6)0.0712 (7)0.0436 (5)0.0159 (5)0.0056 (4)0.0086 (5)
O30.0682 (7)0.0571 (7)0.0645 (7)0.0054 (5)0.0314 (6)0.0256 (5)
Geometric parameters (Å, °) top
C1—N11.4577 (16)C13—H13A0.9700
C1—C121.5089 (17)C13—H13B0.9700
C1—C61.5621 (16)C14—C191.370 (3)
C1—C21.5975 (17)C14—C151.391 (2)
C2—C201.5240 (18)C15—C161.383 (3)
C2—C131.5356 (18)C15—H150.9300
C2—C31.5652 (17)C16—C171.363 (4)
C3—C211.5110 (18)C16—H160.9300
C3—C41.5169 (19)C17—C181.380 (4)
C3—H30.9800C17—H170.9300
C4—N11.4497 (18)C18—C191.384 (2)
C4—H4A0.9700C18—H180.9300
C4—H4B0.9700C19—O21.396 (2)
C5—N11.4529 (18)C20—O31.1892 (17)
C5—H5A0.9600C20—O21.3637 (17)
C5—H5B0.9600C21—C261.382 (2)
C5—H5C0.9600C21—C221.382 (2)
C6—O11.2243 (16)C22—C231.383 (2)
C6—N21.3467 (17)C22—H220.9300
C7—C81.3736 (19)C23—C241.372 (2)
C7—C121.3857 (18)C23—H230.9300
C7—N21.3964 (18)C24—C251.375 (3)
C8—C91.381 (2)C24—C271.505 (2)
C8—H80.9300C25—C261.382 (2)
C9—C101.374 (3)C25—H250.9300
C9—H90.9300C26—H260.9300
C10—C111.387 (2)C27—H27A0.9600
C10—H100.9300C27—H27B0.9600
C11—C121.3820 (18)C27—H27C0.9600
C11—H110.9300N2—H20.8600
C13—C141.496 (2)
N1—C1—C12111.83 (10)C2—C13—H13B109.7
N1—C1—C6113.05 (10)H13A—C13—H13B108.2
C12—C1—C6100.52 (9)C19—C14—C15118.22 (16)
N1—C1—C2102.96 (9)C19—C14—C13117.33 (14)
C12—C1—C2117.43 (10)C15—C14—C13124.44 (17)
C6—C1—C2111.50 (10)C16—C15—C14120.0 (2)
C20—C2—C13106.66 (11)C16—C15—H15120.0
C20—C2—C3110.37 (10)C14—C15—H15120.0
C13—C2—C3112.93 (10)C17—C16—C15120.2 (2)
C20—C2—C1108.58 (10)C17—C16—H16119.9
C13—C2—C1114.63 (10)C15—C16—H16119.9
C3—C2—C1103.64 (9)C16—C17—C18121.2 (2)
C21—C3—C4116.52 (11)C16—C17—H17119.4
C21—C3—C2115.59 (10)C18—C17—H17119.4
C4—C3—C2103.51 (10)C17—C18—C19117.7 (2)
C21—C3—H3106.9C17—C18—H18121.2
C4—C3—H3106.9C19—C18—H18121.2
C2—C3—H3106.9C14—C19—C18122.66 (18)
N1—C4—C3102.26 (11)C14—C19—O2120.77 (13)
N1—C4—H4A111.3C18—C19—O2116.53 (18)
C3—C4—H4A111.3O3—C20—O2117.19 (13)
N1—C4—H4B111.3O3—C20—C2125.69 (13)
C3—C4—H4B111.3O2—C20—C2117.12 (12)
H4A—C4—H4B109.2C26—C21—C22116.83 (14)
N1—C5—H5A109.5C26—C21—C3122.78 (13)
N1—C5—H5B109.5C22—C21—C3120.39 (12)
H5A—C5—H5B109.5C21—C22—C23121.36 (15)
N1—C5—H5C109.5C21—C22—H22119.3
H5A—C5—H5C109.5C23—C22—H22119.3
H5B—C5—H5C109.5C24—C23—C22121.72 (16)
O1—C6—N2125.79 (12)C24—C23—H23119.1
O1—C6—C1125.78 (11)C22—C23—H23119.1
N2—C6—C1108.39 (11)C23—C24—C25117.01 (15)
C8—C7—C12122.44 (13)C23—C24—C27122.04 (18)
C8—C7—N2127.98 (13)C25—C24—C27120.95 (18)
C12—C7—N2109.56 (11)C24—C25—C26121.77 (16)
C7—C8—C9117.18 (16)C24—C25—H25119.1
C7—C8—H8121.4C26—C25—H25119.1
C9—C8—H8121.4C21—C26—C25121.29 (16)
C10—C9—C8121.34 (15)C21—C26—H26119.4
C10—C9—H9119.3C25—C26—H26119.4
C8—C9—H9119.3C24—C27—H27A109.5
C9—C10—C11121.08 (15)C24—C27—H27B109.5
C9—C10—H10119.5H27A—C27—H27B109.5
C11—C10—H10119.5C24—C27—H27C109.5
C12—C11—C10118.15 (15)H27A—C27—H27C109.5
C12—C11—H11120.9H27B—C27—H27C109.5
C10—C11—H11120.9C4—N1—C5115.16 (11)
C11—C12—C7119.70 (12)C4—N1—C1107.14 (10)
C11—C12—C1130.64 (12)C5—N1—C1115.52 (11)
C7—C12—C1109.60 (10)C6—N2—C7111.83 (11)
C14—C13—C2109.89 (12)C6—N2—H2124.1
C14—C13—H13A109.7C7—N2—H2124.1
C2—C13—H13A109.7C20—O2—C19121.05 (12)
C14—C13—H13B109.7
N1—C1—C2—C20107.25 (11)C13—C14—C15—C16179.46 (17)
C12—C1—C2—C2016.07 (14)C14—C15—C16—C171.2 (3)
C6—C1—C2—C20131.25 (11)C15—C16—C17—C181.0 (4)
N1—C1—C2—C13133.62 (11)C16—C17—C18—C190.2 (4)
C12—C1—C2—C13103.06 (13)C15—C14—C19—C180.3 (2)
C6—C1—C2—C1312.12 (15)C13—C14—C19—C18178.73 (15)
N1—C1—C2—C310.10 (11)C15—C14—C19—O2177.45 (14)
C12—C1—C2—C3133.42 (11)C13—C14—C19—O23.5 (2)
C6—C1—C2—C3111.40 (11)C17—C18—C19—C140.5 (3)
C20—C2—C3—C2198.57 (13)C17—C18—C19—O2177.40 (18)
C13—C2—C3—C2120.72 (15)C13—C2—C20—O3138.05 (15)
C1—C2—C3—C21145.34 (11)C3—C2—C20—O315.04 (19)
C20—C2—C3—C4132.81 (11)C1—C2—C20—O397.92 (16)
C13—C2—C3—C4107.91 (13)C13—C2—C20—O242.67 (15)
C1—C2—C3—C416.72 (12)C3—C2—C20—O2165.68 (11)
C21—C3—C4—N1166.01 (10)C1—C2—C20—O281.35 (14)
C2—C3—C4—N137.96 (13)C4—C3—C21—C2622.73 (19)
N1—C1—C6—O155.83 (18)C2—C3—C21—C2699.17 (16)
C12—C1—C6—O1175.18 (14)C4—C3—C21—C22156.91 (13)
C2—C1—C6—O159.61 (18)C2—C3—C21—C2281.19 (16)
N1—C1—C6—N2122.03 (12)C26—C21—C22—C230.4 (2)
C12—C1—C6—N22.69 (13)C3—C21—C22—C23179.90 (14)
C2—C1—C6—N2122.52 (12)C21—C22—C23—C241.4 (3)
C12—C7—C8—C91.1 (2)C22—C23—C24—C251.0 (3)
N2—C7—C8—C9176.91 (14)C22—C23—C24—C27179.71 (17)
C7—C8—C9—C101.5 (2)C23—C24—C25—C260.4 (3)
C8—C9—C10—C111.7 (3)C27—C24—C25—C26178.90 (18)
C9—C10—C11—C120.7 (2)C22—C21—C26—C251.0 (2)
C10—C11—C12—C73.2 (2)C3—C21—C26—C25178.70 (15)
C10—C11—C12—C1179.77 (13)C24—C25—C26—C211.4 (3)
C8—C7—C12—C113.5 (2)C3—C4—N1—C5177.27 (12)
N2—C7—C12—C11174.86 (12)C3—C4—N1—C147.26 (13)
C8—C7—C12—C1178.92 (13)C12—C1—N1—C4162.40 (10)
N2—C7—C12—C12.76 (14)C6—C1—N1—C485.00 (12)
N1—C1—C12—C1153.82 (18)C2—C1—N1—C435.44 (12)
C6—C1—C12—C11174.04 (13)C12—C1—N1—C567.79 (14)
C2—C1—C12—C1164.87 (18)C6—C1—N1—C544.80 (15)
N1—C1—C12—C7123.46 (11)C2—C1—N1—C5165.25 (11)
C6—C1—C12—C73.23 (13)O1—C6—N2—C7176.60 (14)
C2—C1—C12—C7117.86 (11)C1—C6—N2—C71.27 (15)
C20—C2—C13—C1457.15 (15)C8—C7—N2—C6179.11 (14)
C3—C2—C13—C14178.55 (11)C12—C7—N2—C60.90 (16)
C1—C2—C13—C1463.05 (16)O3—C20—O2—C19176.49 (13)
C2—C13—C14—C1936.75 (18)C2—C20—O2—C194.17 (18)
C2—C13—C14—C15142.23 (15)C14—C19—O2—C2021.8 (2)
C19—C14—C15—C160.5 (3)C18—C19—O2—C20160.33 (14)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.022.874 (1)174.
C5—H5B···O3ii0.962.593.407 (2)143.
Symmetry codes: (i) −x+2, −y+2, −z; (ii) x, −y+3/2, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.022.874 (1)174.
C5—H5B···O3ii0.962.593.407 (2)143.
Symmetry codes: (i) −x+2, −y+2, −z; (ii) x, −y+3/2, z−1/2.
Acknowledgements top

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

references
References top

Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2533–o2534.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64–74.

Selvanayagam, S., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o751.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.

Waldmann, H. (1995). Synlett. pp. 133–141.