[Journal logo]

Volume 68 
Part 1 
Page o10  
January 2012  

Received 28 November 2011
Accepted 29 November 2011
Online 3 December 2011

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.005 Å
R = 0.056
wR = 0.110
Data-to-parameter ratio = 12.5
Details
Open access

N-Benzoyl-4-nitrobenzenesulfonamide monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India,bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 102, India
Correspondence e-mail: gowdabt@yahoo.com

In the title compound, C13H10N2O5S·H2O, the dihedral angle between the sulfonyl and benzoyl benzene rings is 83.4 (1)°. In the crystal, the water molecule forms four hydrogen bonds with three different molecules of N-benzoyl-4-nitrobenzenesulfonamide. One of the H atoms of H2O forms a bifurcated hydrogen bond with a sulfonyl and the carbonyl O atoms. Molecules are linked into a three-dimensional network by N-H...O and O-H...O hydrogen bonds.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 59, 845-852.]), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004[Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491-500.]), on N-(aryl)-arylsulfonamides, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.]), on N-(substituted-benzoyl)-arylsulfonamides, see: Suchetan et al. (2011[Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o3515.]) and on N-chloroarylamides, see: Gowda et al. (1996[Gowda, B. T., Dou, S. Q. & Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627-636.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O5S·H2O

  • Mr = 324.31

  • Monoclinic, P 21 /c

  • a = 22.687 (2) Å

  • b = 5.0673 (4) Å

  • c = 12.755 (1) Å

  • [beta] = 100.04 (1)°

  • V = 1443.9 (2) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.26 mm-1

  • T = 293 K

  • 0.46 × 0.08 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.891, Tmax = 0.985

  • 4828 measured reflections

  • 2608 independent reflections

  • 2039 reflections with I > 2[sigma](I)

  • Rint = 0.021

Refinement
  • R[F2 > 2[sigma](F2)] = 0.056

  • wR(F2) = 0.110

  • S = 1.26

  • 2608 reflections

  • 208 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.22 e Å-3

  • [Delta][rho]min = -0.36 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1N...O6 0.86 (2) 1.92 (2) 2.763 (4) 170 (3)
O6-H61...O2i 0.84 (2) 2.14 (2) 2.935 (4) 158 (4)
O6-H62...O3ii 0.82 (2) 2.23 (3) 2.919 (4) 142 (4)
O6-H62...O1ii 0.82 (2) 2.33 (3) 2.988 (3) 138 (4)
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5737 ).


Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC-BSR one-time grant to faculty.

References

Gowda, B. T., Dou, S. Q. & Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627-636.  [ChemPort]
Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.  [ChemPort]
Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 59, 845-852.  [ChemPort]
Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491-500.  [ChemPort]
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o3515.  [CrossRef] [details]


Acta Cryst (2012). E68, o10  [ doi:10.1107/S1600536811051439 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.