supplementary materials


bt5740 scheme

Acta Cryst. (2012). E68, o56-o57    [ doi:10.1107/S160053681105241X ]

(Z)-3-(4-Chlorophenyl)-2-{[N-(2-formylphenyl)-4-methylbenzenesulfonamido]methyl}prop-2-enenitrile

R. Madhanraj, S. Murugavel, D. Kannan and M. Bakthadoss

Abstract top

In the title compound, C24H19ClN2O3S, the sulfonyl-bound benzene ring forms dihedral angles of 38.1 (2) and 81.2 (1)°, respectively, with the formyl benzene and benzene rings. The molecular conformation is stabilized by a weak intramolecular C-H...O hydrogen bond, which generates an S(5) ring motif. The crystal packing is stabilized by C-H...O hydrogen bonds, which generate C(7) zigzag chains along [010] and R33(19) ring motifs along [010]. The crystal packing is further stabilized by C-Cl...[pi] interactions [Cl...centroid = 3.456 (2) Å and C-Cl...centroid = 173.4 (2)°].

Comment top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988, Mandell & Sande, 1992). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The S1 atom shows a distorted tetrahedral geometry, with O2—S1—O3[119.8 (1)°] and N1—S1—C8[107.5 (1)°] angles deviating from ideal tetrahedral values. The sum of bond angles around N1 (352°) indicates that N1 is in sp2 hybridization. The sulfonyl bound phenyl (C8–C13) ring forms dihedral angles of 38.1 (2)° and 81.2 (2)°, respectively, with the formyl phenyl (C1–C6) and phenyl (C18—C23) rings. The dihedral angle between formyl phenyl and phenyl rings is 87.3 (1)°. The Cl1 atom deviates from the plane of attached ring by -0.031 (2) Å. The carbonitrile side chain (C16–C24–N2) is almost linear, with the angle around central carbon atom being 176.9 (3)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Ranjith et al., 2009, Aziz-ur-Rehman et al., 2010).

Ihe molecular structure is stabilized by C15—H15A···O3 intramolecular hydrogen bond, forming S(5) ring motif (Bernstein et al., 1995) (Table 1). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The formation of the framework can be explained in terms of two-one substructures. In the first substructure, atom C3 in the molecule at (x, y, z) acts as a hydrogen bond donor to atom O2 in the molecule at (2-x,1/2+y,1/2-z) generating C(7) zig zag chains which are running along [010] (Fig. 2). In the second substructure, three molecules are linked by the combination of C15—H15A···O2 and C23—H23···O1 intermolecular hydrogen bonds generating R33(19) ring motifs along [010] (Fig. 3). The crystal structure is further stabilized by C—Cl···.π interactions involving chlorine Cl1 and benzene ring (C1–C6), with Cl1···centroid(Cgi) distance of 3.456 (2) Å and C21—Cl1···Cgi angle of 173.4 (2)° (Symmetry code as in Fig. 4). The crystal packing also exhibts ππ interactions with centroid—centroid distances: Cg2—Cg3ii = 3.884 (2) Å and Cg3—Cg2iii = 3.884 (2) Å (Fig. 4; Cg2 and Cg3 are the centroids of C18–C23 benzene ring and C8–C13 benzene ring, respectively, symmetry code as in Fig. 4).

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Ranjith et al. (2009); Aziz-ur-Rehman et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of N-(formylphenyl)(4-methylbenzene)sulfonamide (1 mmol, 0.28 g) and potassium carbonate (1.5 mmol, 0.21 g) in acetonitrile solvent was stirred for 15 minutes at room temperature. To this solution, (E)-2-(bromomethyl)-3-(4-chlorophenyl)prop-2-enenitrile (1.2 mmol, 0.30 g) was added dropwise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitile was evaporated. Ethylacetate (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.41 g, 90 % yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing C—H···O hydrogen bonds (dotted lines), with the formation of C(7) zig zag chains along [010]. [Symmetry codes: (i)2-x, 1/2+y, 1/2-z; (ii)x, 1+y, z; (iii) 2-x, 3/2+y, 1/2-z].
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing C—H···O hydrogen bonds (dotted lines), with the formation of R33(19) ring motifs along [010] [Symmetry codes: (i)1-x, -1/2+y, 1/2-z; (ii)1-x, 1/2+y, 1/2-z; (iii)x, 1+y, z; (iv)1-x, 3/2+y, 1/2-z].
[Figure 4] Fig. 4. A view of the C—Cl···π and ππ interactions (dotted lines) in the crystal structure of the title compound. Cg1, Cg2 and Cg3 denotes centroids of the C1–C6 benzene ring, C8–C13 benzene ring and C18–C23 benzene ring, respectively. [Symmetry codes: (i)-1/2+x, 3/2-y, 1-z; (ii)1-x, -1/2+y, 1/2-z; (iii)1-x, 1/2+y, 1/2-z].
(Z)-3-(4-Chlorophenyl)-2-{[N-(2-formylphenyl)-4- methylbenzenesulfonamido]methyl}prop-2-enenitrile top
Crystal data top
C24H19ClN2O3SF(000) = 936
Mr = 450.92Dx = 1.308 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4939 reflections
a = 8.9795 (5) Åθ = 2.2–26.9°
b = 10.1590 (5) ŵ = 0.29 mm1
c = 25.1050 (13) ÅT = 293 K
V = 2290.1 (2) Å3Block, yellow
Z = 40.25 × 0.23 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
4850 independent reflections
Radiation source: fine-focus sealed tube3396 reflections with I > 2σ(I)
graphiteRint = 0.024
Detector resolution: 10.0 pixels mm-1θmax = 26.9°, θmin = 2.2°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1210
Tmin = 0.931, Tmax = 0.953l = 3131
12721 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.0529P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4850 reflectionsΔρmax = 0.22 e Å3
281 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 2049 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.06 (8)
Crystal data top
C24H19ClN2O3SV = 2290.1 (2) Å3
Mr = 450.92Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9795 (5) ŵ = 0.29 mm1
b = 10.1590 (5) ÅT = 293 K
c = 25.1050 (13) Å0.25 × 0.23 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
4850 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3396 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.953Rint = 0.024
12721 measured reflectionsθmax = 26.9°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.111Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.21 e Å3
4850 reflectionsAbsolute structure: Flack (1983), 2049 Friedel pairs
281 parametersFlack parameter: 0.06 (8)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.7604 (6)0.5498 (5)0.07359 (14)0.1160 (13)
C140.8095 (7)0.6089 (6)0.02121 (16)0.201 (3)
H14A0.76820.55880.00770.301*
H14B0.91620.60710.01900.301*
H14C0.77540.69830.01900.301*
O10.8121 (4)0.1434 (4)0.3700 (2)0.219 (2)
C10.8617 (3)0.4264 (2)0.28758 (8)0.0479 (5)
C20.9741 (3)0.4987 (2)0.26417 (10)0.0643 (6)
H20.95070.56930.24210.077*
C31.1211 (3)0.4665 (3)0.27345 (12)0.0768 (7)
H31.19620.51590.25760.092*
C41.1574 (3)0.3637 (3)0.30530 (11)0.0717 (7)
H41.25680.34270.31130.086*
C51.0479 (3)0.2920 (3)0.32827 (10)0.0666 (7)
H51.07330.22150.35010.080*
C60.8986 (3)0.3211 (2)0.32010 (9)0.0582 (6)
C70.7854 (4)0.2419 (3)0.34760 (14)0.1041 (12)
H70.68740.27150.34720.125*
C80.6734 (3)0.4380 (3)0.16954 (10)0.0628 (6)
C90.5954 (3)0.5421 (3)0.14801 (11)0.0779 (8)
H90.51240.57560.16560.094*
C100.6406 (5)0.5966 (4)0.10032 (13)0.1040 (11)
H100.58760.66710.08620.125*
C120.8370 (4)0.4450 (5)0.09478 (17)0.1209 (15)
H120.91880.41130.07660.145*
C130.7949 (3)0.3886 (4)0.14272 (13)0.0928 (10)
H130.84820.31810.15670.111*
C150.6569 (3)0.5935 (2)0.28573 (9)0.0611 (6)
H15A0.56680.60810.26530.073*
H15B0.73260.65320.27240.073*
C160.6269 (3)0.6244 (2)0.34307 (8)0.0537 (5)
C170.6670 (3)0.7373 (2)0.36505 (9)0.0560 (6)
H170.72770.78970.34380.067*
C180.6318 (3)0.7938 (2)0.41719 (9)0.0570 (6)
C190.5132 (3)0.7545 (3)0.44855 (11)0.0837 (9)
H190.45050.68780.43680.100*
C200.4874 (5)0.8130 (3)0.49684 (12)0.1036 (12)
H200.40720.78590.51760.124*
C210.5776 (5)0.9097 (4)0.51450 (12)0.1022 (12)
C220.6900 (5)0.9554 (3)0.48410 (14)0.1018 (11)
H220.74881.02500.49580.122*
C230.7163 (3)0.8974 (3)0.43569 (12)0.0770 (8)
H230.79370.92910.41460.092*
C240.5434 (3)0.5271 (3)0.37117 (11)0.0716 (7)
N10.7076 (2)0.45611 (17)0.27763 (8)0.0551 (5)
N20.4797 (4)0.4447 (3)0.39244 (12)0.1108 (10)
O20.6758 (2)0.24175 (16)0.23469 (9)0.0834 (6)
O30.46666 (17)0.39646 (19)0.23817 (8)0.0807 (5)
Cl10.5431 (2)0.98128 (16)0.57586 (4)0.1878 (7)
S10.62059 (6)0.37202 (6)0.23103 (3)0.06219 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.119 (3)0.147 (4)0.081 (2)0.033 (3)0.009 (2)0.028 (2)
C140.248 (6)0.258 (7)0.096 (3)0.088 (6)0.045 (3)0.002 (4)
O10.125 (2)0.181 (3)0.353 (5)0.015 (2)0.035 (3)0.203 (4)
C10.0432 (12)0.0425 (11)0.0580 (11)0.0027 (10)0.0012 (10)0.0052 (10)
C20.0609 (16)0.0558 (14)0.0762 (15)0.0082 (12)0.0038 (13)0.0108 (12)
C30.0523 (15)0.0728 (17)0.1051 (19)0.0189 (15)0.0065 (16)0.0079 (17)
C40.0430 (14)0.0819 (19)0.0902 (17)0.0019 (15)0.0090 (13)0.0203 (16)
C50.0646 (17)0.0626 (16)0.0725 (15)0.0150 (15)0.0119 (13)0.0006 (13)
C60.0498 (14)0.0530 (14)0.0716 (13)0.0016 (11)0.0002 (11)0.0059 (11)
C70.077 (2)0.088 (2)0.148 (3)0.0056 (18)0.0180 (19)0.062 (2)
C80.0458 (13)0.0663 (17)0.0762 (15)0.0001 (12)0.0051 (11)0.0263 (13)
C90.079 (2)0.0769 (19)0.0783 (17)0.0068 (16)0.0054 (14)0.0150 (15)
C100.137 (3)0.089 (2)0.086 (2)0.007 (2)0.014 (2)0.0118 (18)
C120.085 (3)0.178 (5)0.101 (3)0.005 (3)0.020 (2)0.050 (3)
C130.0632 (18)0.120 (3)0.095 (2)0.014 (2)0.0043 (16)0.038 (2)
C150.0680 (16)0.0525 (13)0.0626 (13)0.0185 (12)0.0040 (11)0.0006 (11)
C160.0478 (12)0.0512 (13)0.0623 (12)0.0005 (13)0.0036 (11)0.0016 (11)
C170.0517 (14)0.0558 (14)0.0604 (13)0.0009 (11)0.0002 (10)0.0082 (12)
C180.0637 (15)0.0499 (13)0.0574 (12)0.0003 (13)0.0082 (12)0.0057 (10)
C190.100 (2)0.074 (2)0.0773 (17)0.0220 (18)0.0195 (16)0.0119 (14)
C200.135 (3)0.093 (2)0.082 (2)0.012 (2)0.037 (2)0.0069 (18)
C210.146 (4)0.092 (3)0.0687 (17)0.012 (2)0.005 (2)0.0209 (17)
C220.119 (3)0.082 (2)0.105 (2)0.006 (2)0.021 (2)0.034 (2)
C230.0789 (18)0.0617 (16)0.0902 (19)0.0080 (15)0.0028 (15)0.0113 (15)
C240.0772 (18)0.0632 (17)0.0744 (15)0.0074 (16)0.0024 (14)0.0077 (14)
N10.0479 (11)0.0448 (10)0.0727 (12)0.0070 (9)0.0031 (9)0.0042 (9)
N20.134 (3)0.0835 (19)0.115 (2)0.0344 (19)0.0280 (18)0.0016 (16)
O20.0650 (11)0.0475 (10)0.1378 (15)0.0014 (8)0.0240 (11)0.0125 (10)
O30.0386 (9)0.0940 (14)0.1095 (13)0.0011 (10)0.0003 (9)0.0049 (11)
Cl10.2742 (18)0.1942 (13)0.0951 (7)0.0109 (14)0.0130 (9)0.0698 (8)
S10.0394 (3)0.0540 (3)0.0931 (4)0.0008 (3)0.0067 (3)0.0100 (3)
Geometric parameters (Å, °) top
C11—C101.354 (5)C12—C131.386 (5)
C11—C121.375 (6)C12—H120.9300
C11—C141.511 (6)C13—H130.9300
C14—H14A0.9600C15—N11.482 (3)
C14—H14B0.9600C15—C161.498 (3)
C14—H14C0.9600C15—H15A0.9700
O1—C71.173 (4)C15—H15B0.9700
C1—C21.379 (3)C16—C171.323 (3)
C1—C61.386 (3)C16—C241.427 (4)
C1—N11.438 (3)C17—C181.464 (3)
C2—C31.380 (4)C17—H170.9300
C2—H20.9300C18—C231.378 (4)
C3—C41.355 (4)C18—C191.383 (4)
C3—H30.9300C19—C201.370 (4)
C4—C51.353 (4)C19—H190.9300
C4—H40.9300C20—C211.348 (5)
C5—C61.388 (3)C20—H200.9300
C5—H50.9300C21—C221.348 (5)
C6—C71.468 (4)C21—Cl11.731 (3)
C7—H70.9300C22—C231.371 (4)
C8—C131.377 (4)C22—H220.9300
C8—C91.379 (4)C23—H230.9300
C8—S11.748 (3)C24—N21.146 (4)
C9—C101.380 (4)N1—S11.6459 (19)
C9—H90.9300O2—S11.4161 (18)
C10—H100.9300O3—S11.4157 (17)
C10—C11—C12118.5 (4)C8—C13—H13120.3
C10—C11—C14121.6 (5)C12—C13—H13120.3
C12—C11—C14119.9 (5)N1—C15—C16112.58 (19)
C11—C14—H14A109.5N1—C15—H15A109.1
C11—C14—H14B109.5C16—C15—H15A109.1
H14A—C14—H14B109.5N1—C15—H15B109.1
C11—C14—H14C109.5C16—C15—H15B109.1
H14A—C14—H14C109.5H15A—C15—H15B107.8
H14B—C14—H14C109.5C17—C16—C24122.5 (2)
C2—C1—C6119.2 (2)C17—C16—C15122.2 (2)
C2—C1—N1121.2 (2)C24—C16—C15115.1 (2)
C6—C1—N1119.6 (2)C16—C17—C18130.9 (2)
C1—C2—C3120.1 (2)C16—C17—H17114.6
C1—C2—H2120.0C18—C17—H17114.6
C3—C2—H2120.0C23—C18—C19116.9 (2)
C4—C3—C2120.9 (2)C23—C18—C17118.8 (2)
C4—C3—H3119.6C19—C18—C17124.2 (2)
C2—C3—H3119.6C20—C19—C18120.6 (3)
C5—C4—C3119.4 (2)C20—C19—H19119.7
C5—C4—H4120.3C18—C19—H19119.7
C3—C4—H4120.3C21—C20—C19120.3 (3)
C4—C5—C6121.7 (2)C21—C20—H20119.8
C4—C5—H5119.2C19—C20—H20119.8
C6—C5—H5119.2C20—C21—C22121.0 (3)
C1—C6—C5118.8 (2)C20—C21—Cl1119.4 (3)
C1—C6—C7122.3 (2)C22—C21—Cl1119.5 (3)
C5—C6—C7118.9 (2)C21—C22—C23118.9 (3)
O1—C7—C6123.5 (3)C21—C22—H22120.6
O1—C7—H7118.3C23—C22—H22120.6
C6—C7—H7118.3C22—C23—C18122.1 (3)
C13—C8—C9119.4 (3)C22—C23—H23118.9
C13—C8—S1120.5 (2)C18—C23—H23118.9
C9—C8—S1120.1 (2)N2—C24—C16176.9 (3)
C8—C9—C10119.9 (3)C1—N1—C15117.97 (18)
C8—C9—H9120.1C1—N1—S1118.12 (14)
C10—C9—H9120.1C15—N1—S1116.15 (15)
C11—C10—C9121.5 (4)O3—S1—O2119.82 (12)
C11—C10—H10119.2O3—S1—N1106.40 (11)
C9—C10—H10119.2O2—S1—N1105.83 (10)
C11—C12—C13121.3 (4)O3—S1—C8108.02 (12)
C11—C12—H12119.3O2—S1—C8108.70 (13)
C13—C12—H12119.3N1—S1—C8107.46 (11)
C8—C13—C12119.4 (4)
C6—C1—C2—C30.4 (4)C17—C18—C19—C20179.6 (3)
N1—C1—C2—C3178.6 (2)C18—C19—C20—C210.1 (5)
C1—C2—C3—C40.2 (4)C19—C20—C21—C223.4 (6)
C2—C3—C4—C50.0 (4)C19—C20—C21—Cl1179.6 (3)
C3—C4—C5—C60.1 (4)C20—C21—C22—C233.2 (6)
C2—C1—C6—C50.3 (3)Cl1—C21—C22—C23179.8 (3)
N1—C1—C6—C5178.5 (2)C21—C22—C23—C180.2 (5)
C2—C1—C6—C7178.2 (3)C19—C18—C23—C223.3 (4)
N1—C1—C6—C73.5 (4)C17—C18—C23—C22180.0 (3)
C4—C5—C6—C10.1 (4)C17—C16—C24—N2147 (6)
C4—C5—C6—C7178.1 (3)C15—C16—C24—N237 (6)
C1—C6—C7—O1170.6 (4)C2—C1—N1—C1552.3 (3)
C5—C6—C7—O111.5 (6)C6—C1—N1—C15129.5 (2)
C13—C8—C9—C100.7 (4)C2—C1—N1—S195.8 (2)
S1—C8—C9—C10177.8 (2)C6—C1—N1—S182.4 (2)
C12—C11—C10—C90.4 (6)C16—C15—N1—C180.8 (3)
C14—C11—C10—C9179.6 (4)C16—C15—N1—S1130.40 (19)
C8—C9—C10—C110.3 (5)C1—N1—S1—O3166.06 (17)
C10—C11—C12—C130.8 (6)C15—N1—S1—O345.2 (2)
C14—C11—C12—C13180.0 (4)C1—N1—S1—O237.58 (19)
C9—C8—C13—C120.4 (4)C15—N1—S1—O2173.70 (18)
S1—C8—C13—C12178.2 (3)C1—N1—S1—C878.43 (18)
C11—C12—C13—C80.4 (5)C15—N1—S1—C870.29 (19)
N1—C15—C16—C17138.6 (2)C13—C8—S1—O3155.0 (2)
N1—C15—C16—C2445.5 (3)C9—C8—S1—O326.5 (2)
C24—C16—C17—C184.9 (4)C13—C8—S1—O223.5 (2)
C15—C16—C17—C18170.8 (2)C9—C8—S1—O2157.92 (19)
C16—C17—C18—C23164.1 (2)C13—C8—S1—N190.6 (2)
C16—C17—C18—C1919.4 (4)C9—C8—S1—N188.0 (2)
C23—C18—C19—C203.1 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O30.972.432.890 (3)109
C3—H3···O2i0.932.573.345 (3)141.
C15—H15A···O2ii0.972.573.385 (3)142.
C23—H23···O1iii0.932.453.114 (4)128.
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x, y+1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O30.972.432.890 (3)109
C3—H3···O2i0.932.573.345 (3)141.
C15—H15A···O2ii0.972.573.385 (3)142.
C23—H23···O1iii0.932.453.114 (4)128.
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x, y+1, z.
Acknowledgements top

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

references
References top

Aziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.

Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill.

Ranjith, S., Sugumar, P., Sureshbabu, R., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o483.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.