supplementary materials


bt5742 scheme

Acta Cryst. (2012). E68, o99-o100    [ doi:10.1107/S1600536811052573 ]

N-(2-Chloro-4-nitrophenyl)maleamic acid monohydrate

K. Shakuntala, M. Fronc, B. T. Gowda and J. Kozísek

Abstract top

The title compound, C10H7ClN2O5·H2O, crystallizes with a half-molecule each of N-(2-chloro-4-nitrophenyl)maleamic acid (located on a mirror plane) and water (located on a twofold rotation axis) in the asymmetric unit. The main molecule is planar by symmetry and its conformation is stabilized by an intramolecular O-H...O hydrogen bond. In the crystal, N-H...O and O-H...O hydrogen bonds link the molecules into a three-dimensional network.

Comment top

The amide moiety is a constituent of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Prasad et al., 2002; Shakuntala et al., 2011), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloroarylsulfoamides (Gowda & Kumar, 2003), in the present work, the crystal structure of N-(2-chloro-4-nitrophenyl)-maleamic acid monohydrate(I) has been determined (Fig.1).

The conformations of the N—H and the C=O bonds in the amide segment are anti to each other. But the conformation of the N—H bond is syn to the ortho-Cl atom in the phenyl ring, similar to that observed between the N—H bond and ortho-methyl group in N-(4-Chloro-2-methylphenyl)-maleamic acid (II) (Shakuntala et al., 2011).

In the maleamic acid moiety, the amide C=O bond is anti to the adjacent C—H bond, while the carboxyl C=O bond is syn to the adjacent C—H bond. The observed rare anti conformation of the C=O and O—H bonds of the acid group is similar to that observed in (II). This may be due to the hydrogen bond donated to the amide carbonyl group by the carboxyl group. The C2–C3 bond length of 1.327 (4)Å indicates the double bond character.

The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

In (I), both the intramolecular O–H···O and N—H···Cl, and intermolecular N–H···O and O–H···O hydrogen bonds have been observed. The packing of molecules linked by intermolecular N–H···O and O–H···O hydrogen bonds into infinite chains is shown in Fig. 2.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000); Prasad et al. (2002); Shakuntala et al. (2011), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004) on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloroarylsulfonamides, see: Gowda & Kumar (2003). For modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976)

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 2-chloro-4-nitroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2-chloro-4-nitroaniline. The resultant solid N-(2-chloro-4-nitrophenyl)-maleamic acid monohydrate was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colorless single crystals of the title compound used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All hydrogen atoms were placed in calculated positions with C–H distances of 0.93Å and constrained to ride on their parent atoms. Amide and and O—H atoms were seen in difference map and were refined with the N—H distance restrained to 0.86 (1) Å. The Uiso(H) values were set at 1.2 Ueq (C, N, O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view of the title compound. Molecular chains along a-axis are generated by N–H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in H-bonding have been omitted.
3-[(2-chloro-4-nitrophenyl)carbamoyl]prop-2-enoic acid monohydrate top
Crystal data top
C10H7ClN2O5·H2OF(000) = 1184
Mr = 288.64Dx = 1.627 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 4659 reflections
a = 6.7499 (2) Åθ = 2.0–29.4°
b = 20.3357 (5) ŵ = 0.35 mm1
c = 17.1671 (4) ÅT = 293 K
V = 2356.42 (11) Å3Prism, colorless
Z = 80.81 × 0.25 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
1310 independent reflections
Radiation source: fine-focus sealed tube1131 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 10.4340 pixels mm-1θmax = 26.4°, θmin = 4.1°
ω scansh = 88
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 2425
Tmin = 0.860, Tmax = 0.965l = 2121
14309 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0582P)2 + 3.7851P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1310 reflectionsΔρmax = 0.25 e Å3
118 parametersΔρmin = 0.44 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (7)
Crystal data top
C10H7ClN2O5·H2OV = 2356.42 (11) Å3
Mr = 288.64Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 6.7499 (2) ŵ = 0.35 mm1
b = 20.3357 (5) ÅT = 293 K
c = 17.1671 (4) Å0.81 × 0.25 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
1310 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
1131 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.965Rint = 0.027
14309 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128Δρmax = 0.25 e Å3
S = 1.07Δρmin = 0.44 e Å3
1310 reflectionsAbsolute structure: ?
118 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00000.38088 (14)0.11375 (16)0.0392 (7)
C20.00000.31306 (15)0.08336 (18)0.0456 (8)
H2A0.00000.28000.12080.055*
C30.00000.29270 (15)0.00997 (17)0.0450 (8)
H3A0.00000.24720.00480.054*
C40.00000.32802 (18)0.06507 (19)0.0546 (9)
C50.00000.44114 (13)0.23898 (16)0.0350 (6)
C60.00000.43336 (14)0.32018 (16)0.0365 (6)
C70.00000.48666 (15)0.36958 (17)0.0435 (7)
H7A0.00000.48100.42330.052*
C80.00000.54865 (15)0.33704 (18)0.0440 (8)
C90.00000.55845 (14)0.25794 (19)0.0425 (7)
H9A0.00000.60080.23770.051*
C100.00000.50500 (15)0.20906 (17)0.0405 (7)
H10A0.00000.51140.15540.049*
Cl10.00000.35546 (4)0.36046 (4)0.0487 (3)
N10.00000.38484 (12)0.19242 (14)0.0431 (6)
H1A0.00000.34800.21690.052*
N20.00000.60563 (15)0.38903 (18)0.0647 (9)
O10.00000.42972 (11)0.07268 (12)0.0671 (9)
O20.00000.39196 (13)0.06678 (14)0.0886 (12)
H7W0.00000.40700.02670.133*
O30.00000.29773 (15)0.12558 (15)0.0864 (11)
O40.00000.59696 (16)0.45824 (16)0.1041 (14)
O50.00000.65986 (14)0.35994 (18)0.1049 (15)
O110.25000.26168 (15)0.25000.0931 (11)
H110.319 (5)0.2243 (11)0.2174 (17)0.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0580 (18)0.0330 (15)0.0266 (13)0.0000.0000.0002 (11)
C20.075 (2)0.0294 (15)0.0328 (15)0.0000.0000.0028 (12)
C30.070 (2)0.0306 (15)0.0349 (16)0.0000.0000.0042 (12)
C40.089 (3)0.0443 (19)0.0306 (16)0.0000.0000.0048 (14)
C50.0481 (16)0.0313 (13)0.0257 (13)0.0000.0000.0002 (10)
C60.0487 (16)0.0328 (14)0.0279 (14)0.0000.0000.0032 (11)
C70.063 (2)0.0418 (17)0.0259 (13)0.0000.0000.0025 (12)
C80.062 (2)0.0360 (16)0.0341 (15)0.0000.0000.0082 (12)
C90.0593 (19)0.0311 (14)0.0371 (16)0.0000.0000.0002 (12)
C100.0587 (18)0.0357 (15)0.0270 (14)0.0000.0000.0020 (11)
Cl10.0793 (6)0.0367 (4)0.0301 (4)0.0000.0000.0070 (3)
N10.0757 (18)0.0288 (12)0.0248 (11)0.0000.0000.0015 (9)
N20.108 (3)0.0425 (17)0.0436 (17)0.0000.0000.0118 (13)
O10.144 (3)0.0313 (12)0.0258 (11)0.0000.0000.0009 (9)
O20.197 (4)0.0424 (15)0.0262 (12)0.0000.0000.0001 (10)
O30.166 (3)0.0607 (17)0.0327 (13)0.0000.0000.0123 (12)
O40.213 (4)0.0621 (19)0.0368 (15)0.0000.0000.0167 (13)
O50.218 (5)0.0353 (14)0.0618 (19)0.0000.0000.0111 (13)
O110.145 (3)0.0680 (19)0.0664 (19)0.0000.021 (2)0.000
Geometric parameters (Å, °) top
C1—O11.218 (4)C6—Cl11.728 (3)
C1—N11.353 (4)C7—C81.379 (4)
C1—C21.474 (4)C7—H7A0.9300
C2—C31.326 (4)C8—C91.372 (4)
C2—H2A0.9300C8—N21.463 (4)
C3—C41.475 (4)C9—C101.373 (4)
C3—H3A0.9300C9—H9A0.9300
C4—O31.208 (4)C10—H10A0.9300
C4—O21.301 (4)N1—H1A0.8600
C5—C101.397 (4)N2—O41.201 (4)
C5—N11.396 (4)N2—O51.211 (4)
C5—C61.403 (4)O2—H7W0.7531
C6—C71.376 (4)O11—H111.052 (3)
O1—C1—N1122.0 (3)C6—C7—H7A121.0
O1—C1—C2123.9 (3)C8—C7—H7A121.0
N1—C1—C2114.1 (3)C9—C8—C7122.2 (3)
C3—C2—C1128.9 (3)C9—C8—N2119.3 (3)
C3—C2—H2A115.5C7—C8—N2118.5 (3)
C1—C2—H2A115.5C10—C9—C8119.3 (3)
C2—C3—C4132.7 (3)C10—C9—H9A120.3
C2—C3—H3A113.7C8—C9—H9A120.3
C4—C3—H3A113.7C9—C10—C5120.8 (3)
O3—C4—O2119.4 (3)C9—C10—H10A119.6
O3—C4—C3120.2 (3)C5—C10—H10A119.6
O2—C4—C3120.4 (3)C1—N1—C5128.3 (3)
C10—C5—N1123.5 (3)C1—N1—H1A115.9
C10—C5—C6118.1 (3)C5—N1—H1A115.8
N1—C5—C6118.4 (2)O4—N2—O5122.8 (3)
C7—C6—C5121.6 (3)O4—N2—C8119.2 (3)
C7—C6—Cl1118.4 (2)O5—N2—C8118.0 (3)
C5—C6—Cl1120.1 (2)C4—O2—H7W112.6
C6—C7—C8118.1 (3)
O1—C1—C2—C30.0C7—C8—C9—C100.000 (1)
N1—C1—C2—C3180.0N2—C8—C9—C10180.0
C1—C2—C3—C40.0C8—C9—C10—C50.0
C2—C3—C4—O3180.0N1—C5—C10—C9180.0
C2—C3—C4—O20.0C6—C5—C10—C90.0
C10—C5—C6—C70.0O1—C1—N1—C50.0
N1—C5—C6—C7180.0C2—C1—N1—C5180.0
C10—C5—C6—Cl1180.0C10—C5—N1—C10.0
N1—C5—C6—Cl10.0C6—C5—N1—C1180.0
C5—C6—C7—C80.0C9—C8—N2—O4180.0
Cl1—C6—C7—C8180.0C7—C8—N2—O40.000 (1)
C6—C7—C8—C90.000 (1)C9—C8—N2—O50.000 (1)
C6—C7—C8—N2180.0C7—C8—N2—O5180.0
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O110.862.503.178 (3)136.
O2—H7W···O10.751.772.515 (3)171.
O11—H11···O3i1.05 (1)2.04 (2)2.978 (2)146 (3)
Symmetry codes: (i) −x+1/2, −y+1/2, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O110.862.503.178 (3)136.
O2—H7W···O10.751.772.515 (3)171.
O11—H11···O3i1.05 (1)2.04 (2)2.978 (2)146 (3)
Symmetry codes: (i) −x+1/2, −y+1/2, −z.
Acknowledgements top

MF and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202–10) for financial support and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. KS thanks the University Grants Commission, Government of India, New Delhi, for award of a research fellowship under its faculty improvement program.

references
References top

Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. A, 26, 403–425.

Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.

Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.

Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.

Shakuntala, K., Vrábel, V., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3317.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.