metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­hedral zinc in tetra­kis­(1-methyl-1H-imidazole-κN3)zinc bis­­(tetra­fluorido­borate)

aLeiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands, bDepartment of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Kingdom of Saudi Arabia, and cUniversity of Helsinki, Department of Chemistry, Laboratory of Inorganic Chemistry, FIN-00014 Helsinki, Finland
*Correspondence e-mail: reedijk@chem.leidenuniv.nl

(Received 19 November 2011; accepted 20 December 2011; online 23 December 2011)

In the title compound, [Zn(C4H6N2)4](BF4)2, the ZnII ion is in a slightly distorted tetra­hedral coordination geometry, with Zn—N distances in the range 1.980 (2)–1.991 (2) Å. The tetra­hedral angles are in the range 104.93 (9)–118.81 (9)°.

Related literature

For related structures, see: Chen et al. (1996[Chen, X.-M., Huang, X.-C., Xu, Z.-T. & Huang, X.-Y. (1996). Acta Cryst. C52, 2482-2484.]). For the synthesis and properties of the title compound, see: Reedijk (1969[Reedijk, J. (1969). Inorg. Chim. Acta, 3, 517-522.]). The crystal was mounted using the oil-drop method, see: Kottke & Stalke (1993[Kottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615-619.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H6N2)4](BF4)2

  • Mr = 567.42

  • Orthorhombic, P 21 21 21

  • a = 7.257 (1) Å

  • b = 16.023 (1) Å

  • c = 21.040 (2) Å

  • V = 2446.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 173 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.737, Tmax = 0.812

  • 17949 measured reflections

  • 4184 independent reflections

  • 3782 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.08

  • 4184 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1690 Friedel pairs

  • Flack parameter: 0.038 (11)

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: COLLECT/EVAL (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The ligand 1-methyl-1H-methylimidazole (Meim) is an often used solvent and ligand for transition metal ions (Reedijk, 1969). It is a sterically non-demanding heterocyclic ligand, and it readily forms octahedrally coordinated homoleptic compounds with all first-row transition metal ions; the only exception is Cu(II), where 4 ligands coordinate together with 2 anions or other ligands, in a tetragonal geometry; this deviating behaviour is ascribed to the Jahn-Teller effect that prevents d9 ions from having high symmetry. Remarkably, and in addition to the six-coordinate ZnII species, in the case of Zn also tetrahedrally coordinated homoleptic compounds were reported by one of us, for both perchlorate and tetrafluoridoborate (Reedijk, 1969). The tetrahedral geometry was deduced from the significantly different IR ring vibrations near 955 cm-1, compared to the octahedral cases (Reedijk, 1969). Proof for this structure was lacking and another structure, like a tetragonal case with 2 anions could not be excluded. Sometime ago a room temperature three-dimensional structure was reported for the perchlorate, albeit with a less high accuracy (Chen et al. 1996). We now report the related tetrafluoridoborate, which is not isomorphous with the perchlorate, in high accuracy. The molecular structure differs hardly from the perchlorate, and the Zn—N distances are slightly shorter, just as one would expect for the present low-temperature structure.

Related literature top

For related structures, see: Chen et al. (1996). For the synthesis and properties of the title compound, see: Reedijk (1969). The crystal was mounted using the oil-drop method, see: Kottke & Stalke (1993).

Experimental top

0.005 mol of hydrated zinc tetrafluoroborate, [Zn(H2O)6](BF4)2 is reacted in a 100 ml conical flask with 3 ml of trimethyl orthoformate, mof = (CH3O)3CH and the reaction mixture is dissolved in about 25 ml of methanol. Add to this metal salt solution a solution (drop by drop !!) of 0.01 mol of Meim in 10 ml of methanol. Crystals appear upon standing, and can be enhanced by slow evaporating of some of the solvent or after addition of some diethyl ether. The crystals were characterized by elemental analysis and infrared spectra and shown to be identical to the 1969 sample.

A crystal was selected for the X–ray measurements and mounted to the glass fiber using the oil drop method (Kottke & Stalke, 1993) and data were collected at 193 K. The intensity data were corrected for Lorentz and polarization effects and for absorption.

Refinement top

DIRAX Software was used for the unit cell refinement (Duisenberg 1992) SHELXL97 was used for the structure refinement (Sheldrick, 2008). All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl and methylene H atoms at Uiso(H) = 1.2Ueq(C) and methyl H atoms at Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DIRAX (Duisenberg 1992); data reduction: COLLECT/EVAL (Nonius, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Showing the structure of tetrakis(N-methylimidazole)zinc(II) bis(tetrafluoridoborate) with atom labeling. Atomis displacement parameters at the 50% level. Hydrogen atoms omitted for clarity.
tetrakis(1-methyl-1H-imidazole-κN3)zinc bis(tetrafluoridoborate) top
Crystal data top
[Zn(C4H6N2)4](BF4)2F(000) = 1152
Mr = 567.42Dx = 1.541 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 17949 reflections
a = 7.257 (1) Åθ = 2–25°
b = 16.023 (1) ŵ = 1.09 mm1
c = 21.040 (2) ÅT = 173 K
V = 2446.5 (4) Å3Block, colourless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
4184 independent reflections
Radiation source: fine-focus sealed tube3782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ–scanθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.737, Tmax = 0.812k = 1919
17949 measured reflectionsl = 2519
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.9793P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
4184 reflectionsΔρmax = 0.29 e Å3
320 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), 1690 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.038 (11)
Crystal data top
[Zn(C4H6N2)4](BF4)2V = 2446.5 (4) Å3
Mr = 567.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.257 (1) ŵ = 1.09 mm1
b = 16.023 (1) ÅT = 173 K
c = 21.040 (2) Å0.30 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
4184 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3782 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.812Rint = 0.024
17949 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.29 e Å3
S = 1.08Δρmin = 0.22 e Å3
4184 reflectionsAbsolute structure: Flack (1983), 1690 Friedel pairs
320 parametersAbsolute structure parameter: 0.038 (11)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.74735 (4)0.106549 (16)0.211095 (12)0.02792 (9)
N111.0279 (3)0.18745 (14)0.36966 (11)0.0349 (5)
C120.9127 (4)0.13756 (17)0.33848 (13)0.0333 (6)
H12A0.84080.09510.35790.040*
N130.9111 (3)0.15463 (13)0.27699 (10)0.0293 (5)
C141.0326 (4)0.21893 (16)0.26899 (14)0.0331 (6)
H14A1.06200.24480.22970.040*
C151.1040 (4)0.23962 (18)0.32598 (15)0.0380 (7)
H15A1.19110.28260.33410.046*
C161.0587 (5)0.1890 (2)0.43885 (14)0.0521 (9)
H16A1.03250.13370.45660.078*
H16B0.97690.23030.45840.078*
H16C1.18720.20380.44760.078*
N210.5616 (4)0.28245 (15)0.08385 (11)0.0407 (6)
C220.6664 (4)0.22009 (18)0.10313 (14)0.0389 (7)
H22A0.75910.19460.07780.047*
N230.6270 (3)0.19746 (14)0.16175 (10)0.0312 (5)
C240.4888 (5)0.2490 (2)0.18037 (15)0.0498 (8)
H24A0.43000.24770.22070.060*
C250.4481 (5)0.3018 (2)0.13331 (17)0.0565 (9)
H25A0.35750.34450.13410.068*
C260.5728 (6)0.3243 (2)0.02215 (17)0.0655 (11)
H26A0.59910.28300.01100.098*
H26B0.67160.36600.02320.098*
H26C0.45530.35190.01300.098*
N310.9945 (3)0.02052 (14)0.06370 (11)0.0338 (5)
C320.8538 (4)0.00141 (17)0.10051 (13)0.0337 (6)
H32A0.73120.02010.09340.040*
N330.9037 (3)0.04690 (13)0.14854 (10)0.0307 (5)
C341.0903 (4)0.05768 (18)0.14078 (14)0.0370 (7)
H34A1.16790.08940.16800.044*
C351.1459 (4)0.01614 (19)0.08845 (14)0.0404 (7)
H35A1.26780.01320.07220.048*
C360.9860 (5)0.0720 (2)0.00624 (14)0.0504 (9)
H36A0.86350.09740.00270.076*
H36B1.07950.11610.00870.076*
H36C1.00940.03710.03110.076*
N410.3159 (3)0.03724 (13)0.27391 (11)0.0325 (5)
C420.4558 (4)0.02174 (16)0.23532 (13)0.0343 (6)
H42A0.48590.05400.19890.041*
N430.5474 (3)0.04449 (13)0.25430 (10)0.0305 (5)
C440.4575 (4)0.07224 (17)0.30800 (13)0.0365 (7)
H44A0.49180.11960.33250.044*
C450.3142 (4)0.02213 (17)0.32034 (14)0.0358 (7)
H45A0.22900.02690.35440.043*
C460.1797 (5)0.1034 (2)0.26619 (17)0.0515 (8)
H46A0.21370.13850.22990.077*
H46B0.05820.07860.25870.077*
H46C0.17570.13750.30480.077*
B10.5668 (5)0.29807 (19)0.39058 (15)0.0315 (7)
F110.4370 (3)0.35592 (14)0.40508 (12)0.0798 (7)
F120.7350 (3)0.32732 (13)0.40642 (11)0.0793 (6)
F130.5591 (3)0.28377 (13)0.32566 (8)0.0665 (6)
F140.5315 (4)0.22546 (12)0.42041 (9)0.0711 (7)
B20.4462 (5)0.5760 (2)0.55754 (18)0.0425 (8)
F210.3564 (6)0.5904 (2)0.50432 (16)0.1491 (16)
F220.3308 (4)0.54048 (14)0.60095 (16)0.1142 (12)
F230.5926 (4)0.52453 (16)0.54884 (12)0.0815 (7)
F240.5047 (4)0.65008 (14)0.58165 (13)0.0866 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02814 (15)0.02826 (14)0.02736 (14)0.00132 (17)0.00093 (17)0.00254 (11)
N110.0360 (13)0.0347 (12)0.0339 (12)0.0090 (11)0.0098 (11)0.0097 (11)
C120.0330 (15)0.0307 (13)0.0362 (15)0.0035 (13)0.0003 (12)0.0038 (12)
N130.0317 (12)0.0280 (11)0.0281 (13)0.0022 (10)0.0018 (9)0.0032 (9)
C140.0300 (15)0.0285 (13)0.0407 (16)0.0015 (12)0.0010 (12)0.0005 (12)
C150.0318 (15)0.0311 (14)0.0510 (18)0.0002 (13)0.0101 (14)0.0039 (14)
C160.065 (2)0.057 (2)0.0345 (17)0.0133 (19)0.0171 (16)0.0096 (15)
N210.0469 (15)0.0389 (14)0.0362 (14)0.0066 (13)0.0142 (12)0.0034 (11)
C220.0433 (16)0.0365 (15)0.0369 (16)0.0026 (14)0.0046 (14)0.0037 (13)
N230.0314 (13)0.0344 (12)0.0277 (12)0.0015 (11)0.0004 (10)0.0000 (10)
C240.0482 (19)0.066 (2)0.0353 (16)0.0203 (18)0.0006 (15)0.0016 (16)
C250.059 (2)0.058 (2)0.053 (2)0.0250 (18)0.0099 (18)0.0019 (18)
C260.080 (3)0.065 (2)0.052 (2)0.012 (2)0.019 (2)0.0273 (19)
N310.0410 (14)0.0300 (11)0.0305 (12)0.0088 (11)0.0007 (11)0.0019 (10)
C320.0363 (15)0.0315 (14)0.0333 (15)0.0013 (13)0.0002 (12)0.0043 (12)
N330.0332 (13)0.0298 (11)0.0292 (12)0.0011 (10)0.0003 (10)0.0035 (10)
C340.0325 (16)0.0382 (16)0.0402 (16)0.0008 (13)0.0006 (13)0.0061 (13)
C350.0348 (16)0.0446 (17)0.0418 (17)0.0084 (15)0.0033 (14)0.0020 (14)
C360.068 (2)0.0482 (18)0.0348 (16)0.0147 (17)0.0050 (16)0.0144 (14)
N410.0318 (13)0.0259 (11)0.0398 (14)0.0037 (9)0.0071 (9)0.0009 (10)
C420.0392 (17)0.0290 (14)0.0347 (14)0.0028 (13)0.0059 (13)0.0036 (12)
N430.0321 (13)0.0270 (11)0.0323 (12)0.0026 (11)0.0022 (10)0.0018 (9)
C440.0406 (17)0.0319 (14)0.0371 (16)0.0011 (13)0.0063 (13)0.0104 (12)
C450.0328 (16)0.0367 (15)0.0380 (15)0.0040 (12)0.0080 (12)0.0025 (13)
C460.0502 (19)0.0400 (17)0.064 (2)0.0149 (15)0.0116 (16)0.0043 (16)
B10.0349 (18)0.0275 (15)0.0321 (17)0.0002 (15)0.0037 (14)0.0007 (13)
F110.0721 (15)0.0666 (13)0.1008 (18)0.0343 (13)0.0033 (13)0.0135 (13)
F120.0497 (12)0.0719 (12)0.1162 (18)0.0095 (13)0.0260 (15)0.0203 (12)
F130.0923 (16)0.0784 (14)0.0290 (10)0.0241 (13)0.0019 (10)0.0042 (9)
F140.129 (2)0.0406 (10)0.0436 (11)0.0129 (12)0.0012 (12)0.0122 (9)
B20.037 (2)0.0398 (19)0.050 (2)0.0009 (17)0.0064 (17)0.0080 (16)
F210.208 (4)0.119 (2)0.120 (3)0.002 (2)0.118 (3)0.021 (2)
F220.105 (2)0.0549 (14)0.182 (3)0.0142 (14)0.076 (2)0.0322 (17)
F230.0736 (16)0.0789 (15)0.0921 (18)0.0272 (14)0.0142 (13)0.0017 (13)
F240.0853 (17)0.0659 (14)0.109 (2)0.0175 (14)0.0057 (16)0.0223 (14)
Geometric parameters (Å, º) top
Zn1—N431.980 (2)N31—C361.465 (4)
Zn1—N131.982 (2)C32—N331.324 (3)
Zn1—N331.983 (2)C32—H32A0.9500
Zn1—N231.991 (2)N33—C341.375 (4)
N11—C121.330 (4)C34—C351.348 (4)
N11—C151.359 (4)C34—H34A0.9500
N11—C161.473 (4)C35—H35A0.9500
C12—N131.322 (3)C36—H36A0.9800
C12—H12A0.9500C36—H36B0.9800
N13—C141.366 (3)C36—H36C0.9800
C14—C151.347 (4)N41—C421.324 (4)
C14—H14A0.9500N41—C451.364 (4)
C15—H15A0.9500N41—C461.459 (4)
C16—H16A0.9800C42—N431.314 (3)
C16—H16B0.9800C42—H42A0.9500
C16—H16C0.9800N43—C441.378 (3)
N21—C221.320 (4)C44—C451.339 (4)
N21—C251.362 (4)C44—H44A0.9500
N21—C261.463 (4)C45—H45A0.9500
C22—N231.317 (4)C46—H46A0.9800
C22—H22A0.9500C46—H46B0.9800
N23—C241.357 (4)C46—H46C0.9800
C24—C251.335 (5)B1—F141.346 (4)
C24—H24A0.9500B1—F121.349 (4)
C25—H25A0.9500B1—F111.356 (4)
C26—H26A0.9800B1—F131.386 (4)
C26—H26B0.9800B2—F211.316 (4)
C26—H26C0.9800B2—F231.357 (4)
N31—C321.318 (4)B2—F241.359 (4)
N31—C351.350 (4)B2—F221.364 (4)
N43—Zn1—N13108.27 (9)N31—C32—N33111.9 (3)
N43—Zn1—N33118.81 (9)N31—C32—H32A124.1
N13—Zn1—N33107.97 (9)N33—C32—H32A124.1
N43—Zn1—N23106.57 (9)C32—N33—C34104.6 (2)
N13—Zn1—N23110.09 (9)C32—N33—Zn1129.2 (2)
N33—Zn1—N23104.93 (9)C34—N33—Zn1125.57 (19)
C12—N11—C15106.9 (2)C35—C34—N33109.2 (3)
C12—N11—C16126.4 (3)C35—C34—H34A125.4
C15—N11—C16126.6 (3)N33—C34—H34A125.4
N13—C12—N11111.3 (3)C34—C35—N31106.7 (3)
N13—C12—H12A124.3C34—C35—H35A126.7
N11—C12—H12A124.3N31—C35—H35A126.7
C12—N13—C14105.7 (2)N31—C36—H36A109.5
C12—N13—Zn1127.5 (2)N31—C36—H36B109.5
C14—N13—Zn1126.43 (18)H36A—C36—H36B109.5
C15—C14—N13108.9 (2)N31—C36—H36C109.5
C15—C14—H14A125.6H36A—C36—H36C109.5
N13—C14—H14A125.6H36B—C36—H36C109.5
C14—C15—N11107.1 (2)C42—N41—C45108.4 (2)
C14—C15—H15A126.4C42—N41—C46126.0 (2)
N11—C15—H15A126.4C45—N41—C46125.5 (2)
N11—C16—H16A109.5N43—C42—N41110.7 (2)
N11—C16—H16B109.5N43—C42—H42A124.7
H16A—C16—H16B109.5N41—C42—H42A124.7
N11—C16—H16C109.5C42—N43—C44105.7 (2)
H16A—C16—H16C109.5C42—N43—Zn1129.52 (19)
H16B—C16—H16C109.5C44—N43—Zn1124.14 (18)
C22—N21—C25106.6 (3)C45—C44—N43109.5 (2)
C22—N21—C26126.0 (3)C45—C44—H44A125.3
C25—N21—C26127.4 (3)N43—C44—H44A125.3
N23—C22—N21111.8 (3)C44—C45—N41105.8 (2)
N23—C22—H22A124.1C44—C45—H45A127.1
N21—C22—H22A124.1N41—C45—H45A127.1
C22—N23—C24105.3 (2)N41—C46—H46A109.5
C22—N23—Zn1126.5 (2)N41—C46—H46B109.5
C24—N23—Zn1128.2 (2)H46A—C46—H46B109.5
C25—C24—N23109.6 (3)N41—C46—H46C109.5
C25—C24—H24A125.2H46A—C46—H46C109.5
N23—C24—H24A125.2H46B—C46—H46C109.5
C24—C25—N21106.8 (3)F14—B1—F12110.9 (3)
C24—C25—H25A126.6F14—B1—F11110.7 (3)
N21—C25—H25A126.6F12—B1—F11109.6 (3)
N21—C26—H26A109.5F14—B1—F13108.0 (2)
N21—C26—H26B109.5F12—B1—F13109.7 (3)
H26A—C26—H26B109.5F11—B1—F13107.9 (3)
N21—C26—H26C109.5F21—B2—F23112.3 (4)
H26A—C26—H26C109.5F21—B2—F24108.5 (3)
H26B—C26—H26C109.5F23—B2—F24109.7 (3)
C32—N31—C35107.6 (2)F21—B2—F22109.8 (4)
C32—N31—C36125.7 (3)F23—B2—F22108.5 (3)
C35—N31—C36126.7 (3)F24—B2—F22107.8 (3)

Experimental details

Crystal data
Chemical formula[Zn(C4H6N2)4](BF4)2
Mr567.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.257 (1), 16.023 (1), 21.040 (2)
V3)2446.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.737, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
17949, 4184, 3782
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.08
No. of reflections4184
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22
Absolute structureFlack (1983), 1690 Friedel pairs
Absolute structure parameter0.038 (11)

Computer programs: COLLECT (Nonius, 2002), DIRAX (Duisenberg 1992), COLLECT/EVAL (Nonius, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are indebted to several generations of BSc, MSc and PhD students who have tried to reproduce the compound and to grow crystals of diffraction quality.

References

First citationChen, X.-M., Huang, X.-C., Xu, Z.-T. & Huang, X.-Y. (1996). Acta Cryst. C52, 2482–2484.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615–619.  CrossRef Web of Science IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationReedijk, J. (1969). Inorg. Chim. Acta, 3, 517–522.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds