supplementary materials


cv5198 scheme

Acta Cryst. (2012). E68, o246    [ doi:10.1107/S1600536811054651 ]

2-Hydroxy-N,N,N-trimethyl-3-tetradecyloxypropan-1-aminium bromide

X. Wang, X. Wei and P. Du

Abstract top

In the crystal structure of the title compound, C20H44NO2+·Br-, the cation and anion are connected via an O-H...Br hydrogen bond, forming an ionic pair. The cation is disordered over two conformations related by a mirror plane, and the anion is situated on a mirror plane so that the asymmetric unit contains half of the ionic pair. The long alkyl chain in the cation adopts an all-trans conformation. The crystal packing exhibits weak intermolecular C-H...O interactions.

Comment top

Cationic surfactants have various applications serving as fabric softeners, disinfectants, demulsifiers, emulsifiers, wetting agents and processing aids. Quaternary ammonium based surfactants are molecules with at least one hydrophobic long alkyl chain attached to a positively charged nitrogen atom. Synthesis of 3-alkoxy-2-hydroxypropyl-N,N,N-trimethylpropan- 1-aminium bromides (RTABs) was described by Yin et al. (1998). As a part of the studies on the chemistry of surfactants, we report here the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds (Koh et al., 1993; Fu et al., 2009; Liu et al., 2010). The C3—O2 and C4—O2 bond lengths are 1.411 (10) and 1.373 (7) Å, respectively. The cation and anion are connected by O—H···Br hydrogen bond (Table 1) forming an ionic pair. The cation is disordered over two conformations related by the mirror plane, and anion is situated on a mirror plane so asymmetric unit contains a half of the ionic pair.

The crystal packing exhibits weak intermolecular C—H···O interactions (Table 1).

Related literature top

For related structures, see: Koh et al. (1993); Fu et al. (2009); Liu et al. (2010). For details of the synthesis, see: Yin et al. (1998).

Experimental top

The reaction was carried out under nitrogen atmosphere. Trimethylammonium bromide (0.12 mol) and tetradecyl glcidyl ether (0.1 mol) were added to a stirred solution of ethanol (100 ml) and stirred at 320 K for 24 h. The resulting clear solution was evaporated under vacuum. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation of a ethyl acetate solution over a period of two weeks. (yield 78%,m.p. 342 K) Anal. Calcd(%) for C20H44NO2+Br- (410.47): C, 57.87; H, 10.72; N, 3.41. Found (%): C, 58.48, H, 10.82 N, 3.48.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with O—H distances of 0.85 Å, C—H distances of 0.97 Å (methylene), C—H distances of 0.96 Å (methyl). TheUiso(H) values were set at 1.2Ueq for the methylene H atoms and at 1.5Ueq for other H atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labeling scheme and 50% probability displacement ellipsoids [symmetry code: (A) x, 1/2-y, z]. Only one conformation of the cation is shown. Dashed line denotes hydrogen bond. C-bound H-atoms omitted for clarity.
2-Hydroxy-N,N,N-trimethyl-3-tetradecyloxypropan-1-aminium bromide top
Crystal data top
C20H44NO2+·BrF(000) = 444
Mr = 410.47Dx = 1.155 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 5.9470 (4) ÅCell parameters from 1899 reflections
b = 7.4331 (5) Åθ = 2.7–20.7°
c = 26.720 (2) ŵ = 1.75 mm1
β = 92.185 (1)°T = 293 K
V = 1180.30 (15) Å3Block, colourless
Z = 20.39 × 0.32 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2251 independent reflections
Radiation source: fine-focus sealed tube1430 reflections with I > 2σ(I)
graphiteRint = 0.048
phi and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 76
Tmin = 0.548, Tmax = 0.621k = 68
5657 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0907P)2]
where P = (Fo2 + 2Fc2)/3
2251 reflections(Δ/σ)max = 0.001
171 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C20H44NO2+·BrV = 1180.30 (15) Å3
Mr = 410.47Z = 2
Monoclinic, P21/mMo Kα radiation
a = 5.9470 (4) ŵ = 1.75 mm1
b = 7.4331 (5) ÅT = 293 K
c = 26.720 (2) Å0.39 × 0.32 × 0.30 mm
β = 92.185 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2251 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1430 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 0.621Rint = 0.048
5657 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.154Δρmax = 0.36 e Å3
S = 0.99Δρmin = 0.42 e Å3
2251 reflectionsAbsolute structure: ?
171 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.29860 (11)0.75000.07517 (2)0.0781 (3)
O10.3202 (8)0.3776 (8)0.13541 (18)0.0719 (15)0.50
H1D0.27380.46550.11830.086*0.50
O20.0819 (8)0.25000.23481 (14)0.1043 (17)
N10.0902 (7)0.25000.07672 (15)0.0570 (11)
C10.0206 (14)0.1957 (11)0.1295 (3)0.070 (3)0.50
H1A0.07730.09140.12690.084*0.50
H1B0.15380.16180.14940.084*0.50
C20.1016 (13)0.3479 (12)0.1561 (3)0.064 (2)0.50
H20.01330.45900.15490.077*0.50
C30.1261 (14)0.290 (4)0.2101 (2)0.087 (8)0.50
H3A0.19970.38530.22820.104*0.50
H3B0.22180.18430.21080.104*0.50
C40.0878 (14)0.25000.2862 (2)0.113 (3)
H4A0.00490.14520.29680.135*0.50
H4B0.00490.35480.29680.135*0.50
C50.2932 (11)0.25000.3127 (2)0.091 (2)
H5A0.35530.36980.30920.109*0.50
H5B0.39070.16940.29500.109*0.50
C60.3204 (15)0.203 (3)0.3659 (3)0.096 (8)0.50
H6A0.19450.25000.38260.116*
H6B0.30320.07390.36830.116*0.50
C70.5191 (12)0.25000.3947 (2)0.090 (2)
H7A0.53220.38000.39350.108*0.50
H7B0.64540.20180.37710.108*0.50
C80.5521 (14)0.1965 (14)0.4480 (3)0.086 (4)0.50
H8A0.42340.25000.46550.103*
H8B0.54520.06620.44920.103*0.50
C90.7504 (12)0.25000.4770 (2)0.087 (2)
H9A0.75760.38030.47600.104*0.50
H9B0.87960.20570.45960.104*0.50
C100.7807 (16)0.1948 (14)0.5305 (3)0.089 (4)0.50
H10A0.65130.25000.54790.107*
H10B0.77510.06450.53150.107*0.50
C110.9785 (12)0.25000.5590 (2)0.090 (2)
H11A0.98390.38030.55770.108*0.50
H11B1.10740.20630.54140.108*0.50
C121.0140 (15)0.1975 (15)0.6127 (3)0.089 (5)0.50
H12A0.88650.25000.63040.107*
H12B1.00590.06720.61410.107*0.50
C131.2124 (13)0.25000.6409 (2)0.096 (2)
H13A1.26900.35300.62290.116*0.50
H13B1.31870.15360.63550.116*0.50
C141.2474 (15)0.297 (2)0.6938 (3)0.098 (7)0.50
H14A1.23090.42670.69630.118*0.50
H14B1.12380.25000.71150.118*
C151.4523 (14)0.25000.7218 (2)0.112 (3)
H15A1.49030.12950.71100.135*0.50
H15B1.56780.32860.70940.135*0.50
C161.4849 (15)0.25000.7756 (3)0.130 (3)
H16A1.40500.35440.78750.155*0.50
H16B1.40500.14560.78750.155*0.50
C171.6923 (17)0.25000.8012 (3)0.157 (4)
H17A1.67030.25000.83660.235*
H17B1.77510.35550.79230.235*0.50
H17C1.77510.14450.79230.235*0.50
C180.1067 (9)0.25000.04103 (18)0.0646 (15)
H18A0.19880.35320.04710.097*0.50
H18B0.19300.14240.04550.097*0.50
H18C0.05580.25440.00740.097*0.50
C190.2289 (7)0.4126 (7)0.06755 (16)0.0844 (13)
H19A0.26780.41580.03300.127*
H19B0.36380.40840.08850.127*
H19C0.14470.51860.07530.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0846 (5)0.0628 (4)0.0888 (5)0.0000.0271 (3)0.000
O10.060 (3)0.087 (4)0.069 (3)0.000 (3)0.000 (3)0.004 (3)
O20.089 (3)0.183 (5)0.041 (2)0.0000.005 (2)0.000
N10.047 (2)0.074 (3)0.050 (3)0.0000.0014 (19)0.000
C10.071 (5)0.088 (10)0.052 (4)0.015 (4)0.003 (4)0.002 (4)
C20.059 (5)0.087 (5)0.045 (5)0.008 (4)0.003 (4)0.002 (4)
C30.082 (5)0.13 (3)0.052 (4)0.001 (6)0.008 (4)0.006 (6)
C40.108 (6)0.173 (9)0.058 (5)0.0000.007 (4)0.000
C50.095 (5)0.139 (6)0.039 (3)0.0000.003 (3)0.000
C60.103 (6)0.14 (2)0.047 (4)0.009 (7)0.000 (4)0.000 (5)
C70.104 (5)0.125 (6)0.042 (4)0.0000.009 (3)0.000
C80.100 (6)0.109 (13)0.047 (4)0.000 (5)0.001 (4)0.000 (4)
C90.105 (5)0.112 (6)0.044 (3)0.0000.008 (3)0.000
C100.107 (6)0.114 (13)0.047 (4)0.005 (5)0.001 (4)0.002 (4)
C110.103 (5)0.122 (6)0.046 (4)0.0000.007 (3)0.000
C120.110 (6)0.110 (14)0.047 (4)0.003 (6)0.003 (4)0.005 (4)
C130.115 (6)0.127 (6)0.048 (4)0.0000.007 (4)0.000
C140.117 (7)0.13 (2)0.043 (4)0.025 (8)0.002 (4)0.000 (5)
C150.113 (6)0.169 (9)0.055 (4)0.0000.010 (4)0.000
C160.137 (8)0.197 (10)0.053 (5)0.0000.017 (5)0.000
C170.132 (8)0.273 (15)0.065 (5)0.0000.000 (5)0.000
C180.064 (3)0.087 (4)0.042 (3)0.0000.000 (3)0.000
C190.079 (3)0.081 (3)0.094 (3)0.015 (2)0.004 (2)0.007 (2)
Geometric parameters (Å, °) top
O1—C21.411 (8)C9—C8i1.441 (9)
O1—H1D0.8500C9—C101.493 (9)
O2—C41.373 (7)C9—C10i1.493 (9)
O2—C3i1.411 (10)C9—H9A0.9700
O2—C31.411 (10)C9—H9B0.9700
N1—C181.482 (6)C10—C10i0.82 (2)
N1—C191.489 (5)C10—C111.437 (10)
N1—C19i1.489 (5)C10—H10A1.0021
N1—C11.538 (8)C10—H10B0.9700
N1—C1i1.538 (8)C11—C10i1.437 (10)
C1—C1i0.808 (16)C11—C121.493 (9)
C1—C2i1.087 (9)C11—C12i1.493 (9)
C1—C21.535 (10)C11—H11A0.9700
C1—H1A0.9700C11—H11B0.9701
C1—H1B0.9699C12—C12i0.78 (2)
C2—C1i1.087 (9)C12—C131.430 (10)
C2—C2i1.455 (17)C12—H12A0.9892
C2—C31.518 (12)C12—H12B0.9700
C2—C3i1.780 (19)C13—C12i1.430 (10)
C2—H20.9800C13—C141.465 (10)
C3—C3i0.59 (6)C13—C14i1.465 (10)
C3—C2i1.780 (19)C13—H13A0.9700
C3—H3A0.9700C13—H13B0.9700
C3—H3B0.9700C14—C14i0.70 (4)
C4—C51.389 (9)C14—C151.448 (11)
C4—H4A0.9700C14—H14A0.9701
C4—H4B0.9700C14—H14B0.9543
C5—C61.465 (10)C15—C161.443 (9)
C5—C6i1.465 (10)C15—C14i1.448 (11)
C5—H5A0.9700C15—H15A0.9701
C5—H5B0.9700C15—H15B0.9701
C6—C6i0.69 (4)C16—C171.387 (11)
C6—C71.428 (10)C16—H16A0.9700
C6—H6A0.9514C16—H16B0.9700
C6—H6B0.9699C17—H17A0.9600
C7—C6i1.428 (10)C17—H17B0.9600
C7—C81.486 (8)C17—H17C0.9600
C7—C8i1.486 (8)C18—H18A0.9600
C7—H7A0.9700C18—H18B0.9600
C7—H7B0.9698C18—H18C0.9600
C8—C8i0.80 (2)C19—H19A0.9600
C8—C91.441 (9)C19—H19B0.9600
C8—H8A0.9952C19—H19C0.9600
C8—H8B0.9700
C2—O1—H1D91.1C9—C8—H8A105.5
C4—O2—C3i117.1 (6)C7—C8—H8A105.5
C4—O2—C3117.1 (6)C8i—C8—H8B176.9
C3i—O2—C324 (2)C9—C8—H8B107.1
C18—N1—C19108.9 (3)C7—C8—H8B107.1
C18—N1—C19i108.9 (3)H8A—C8—H8B110.4
C19—N1—C19i108.5 (5)C8i—C9—C832.0 (8)
C18—N1—C1110.9 (4)C8i—C9—C10131.0 (7)
C19—N1—C1122.3 (4)C8—C9—C10120.3 (6)
C19i—N1—C196.2 (4)C8i—C9—C10i120.3 (6)
C18—N1—C1i110.9 (4)C8—C9—C10i131.0 (7)
C19—N1—C1i96.2 (4)C10—C9—C10i31.9 (8)
C19i—N1—C1i122.3 (4)C8i—C9—H9A75.3
C1—N1—C1i30.5 (6)C8—C9—H9A107.3
C18—N1—Br165.78 (10)C10—C9—H9A107.2
C19—N1—Br166.7 (2)C10i—C9—H9A75.4
C19i—N1—Br1169.6 (3)C8i—C9—H9B119.0
C1—N1—Br194.1 (3)C8—C9—H9B107.3
C1i—N1—Br168.0 (3)C10—C9—H9B107.2
C1i—C1—C2i107.3 (6)C10i—C9—H9B118.9
C1i—C1—C242.5 (4)H9A—C9—H9B106.9
C2i—C1—C264.8 (8)C10i—C10—C1173.4 (4)
C1i—C1—N174.8 (3)C10i—C10—C974.0 (4)
C2i—C1—N1152.8 (8)C11—C10—C9119.8 (7)
C2—C1—N1112.4 (6)C10i—C10—H10A65.8
C1i—C1—H1A143.0C11—C10—H10A105.3
C2i—C1—H1A52.6C9—C10—H10A105.4
C2—C1—H1A109.1C10i—C10—H10B177.4
N1—C1—H1A109.1C11—C10—H10B107.4
C1i—C1—H1B105.0C9—C10—H10B107.4
C2i—C1—H1B96.7H10A—C10—H10B111.6
C2—C1—H1B109.1C10i—C11—C1033.2 (9)
N1—C1—H1B109.1C10i—C11—C12131.8 (7)
H1A—C1—H1B107.9C10—C11—C12121.2 (6)
C1i—C2—O1114.8 (7)C10i—C11—C12i121.2 (6)
C1i—C2—C2i72.7 (6)C10—C11—C12i131.8 (7)
O1—C2—C2i99.0 (4)C12—C11—C12i30.3 (8)
C1i—C2—C3129.0 (11)C10i—C11—H11A73.9
O1—C2—C3107.3 (6)C10—C11—H11A107.0
C2i—C2—C373.5 (11)C12—C11—H11A107.0
C1i—C2—C130.2 (7)C12i—C11—H11A76.7
O1—C2—C1112.3 (6)C10i—C11—H11B118.9
C2i—C2—C142.5 (4)C10—C11—H11B107.0
C3—C2—C1107.3 (11)C12—C11—H11B107.0
C1i—C2—C3i116.0 (9)C12i—C11—H11B117.9
O1—C2—C3i107.8 (6)H11A—C11—H11B106.8
C2i—C2—C3i54.9 (8)C12i—C12—C1374.1 (4)
C3—C2—C3i18.7 (18)C12i—C12—C1174.8 (4)
C1—C2—C3i90.4 (8)C13—C12—C11121.2 (7)
C1i—C2—H281.7C12i—C12—H12A66.7
O1—C2—H2110.0C13—C12—H12A105.8
C2i—C2—H2147.4C11—C12—H12A105.8
C3—C2—H2110.0C12i—C12—H12B176.3
C1—C2—H2110.0C13—C12—H12B107.1
C3i—C2—H2124.9C11—C12—H12B107.0
C3i—C3—O277.9 (11)H12A—C12—H12B109.6
C3i—C3—C2106.5 (11)C12i—C13—C1231.7 (9)
O2—C3—C2112.9 (6)C12i—C13—C14121.8 (7)
C3i—C3—C2i54.9 (8)C12—C13—C14131.1 (7)
O2—C3—C2i99.2 (11)C12i—C13—C14i131.1 (7)
C2—C3—C2i51.6 (7)C12—C13—C14i121.8 (7)
C3i—C3—H3A136.9C14—C13—C14i27.7 (14)
O2—C3—H3A109.0C12i—C13—H13A79.6
C2—C3—H3A109.0C12—C13—H13A104.5
C2i—C3—H3A151.0C14—C13—H13A104.4
C3i—C3—H3B36.0C14i—C13—H13A128.8
O2—C3—H3B109.0C12i—C13—H13B130.8
C2—C3—H3B109.0C12—C13—H13B104.5
C2i—C3—H3B67.4C14—C13—H13B104.5
H3A—C3—H3B107.8C14i—C13—H13B84.1
O2—C4—C5119.9 (6)H13A—C13—H13B105.6
O2—C4—H4A107.3C14i—C14—C1576.0 (7)
C5—C4—H4A107.3C14i—C14—C1376.2 (7)
O2—C4—H4B107.3C15—C14—C13121.8 (9)
C5—C4—H4B107.3C14i—C14—H14A172.9
H4A—C4—H4B106.9C15—C14—H14A106.9
C4—C5—C6123.9 (7)C13—C14—H14A106.9
C4—C5—C6i123.9 (6)C14i—C14—H14B68.5
C6—C5—C6i27.4 (16)C15—C14—H14B107.8
C4—C5—H5A106.4C13—C14—H14B107.8
C6—C5—H5A106.4H14A—C14—H14B104.4
C6i—C5—H5A81.3C16—C15—C14i126.3 (7)
C4—C5—H5B106.3C16—C15—C14126.3 (7)
C6—C5—H5B106.3C14i—C15—C1428.0 (14)
C6i—C5—H5B125.0C16—C15—H15A105.7
H5A—C5—H5B106.4C14i—C15—H15A79.9
C6i—C6—C775.9 (8)C14—C15—H15A105.8
C6i—C6—C576.3 (8)C16—C15—H15B105.7
C7—C6—C5121.6 (9)C14i—C15—H15B124.2
C6i—C6—H6A68.6C14—C15—H15B105.7
C7—C6—H6A108.0H15A—C15—H15B106.2
C5—C6—H6A108.0C17—C16—C15125.0 (8)
C6i—C6—H6B172.7C17—C16—H16A106.1
C7—C6—H6B107.0C15—C16—H16A106.1
C5—C6—H6B107.0C17—C16—H16B106.1
H6A—C6—H6B104.1C15—C16—H16B106.1
C6i—C7—C628.1 (16)H16A—C16—H16B106.3
C6i—C7—C8131.2 (7)C16—C17—H17A109.5
C6—C7—C8121.9 (7)C16—C17—H17B109.5
C6i—C7—C8i121.9 (7)H17A—C17—H17B109.5
C6—C7—C8i131.2 (7)C16—C17—H17C109.5
C8—C7—C8i31.0 (8)H17A—C17—H17C109.5
C6i—C7—H7A78.9H17B—C17—H17C109.5
C6—C7—H7A106.9N1—C18—H18A109.5
C8—C7—H7A106.8N1—C18—H18B109.5
C8i—C7—H7A75.9H18A—C18—H18B109.5
C6i—C7—H7B118.0N1—C18—H18C109.5
C6—C7—H7B106.8H18A—C18—H18C109.5
C8—C7—H7B106.8H18B—C18—H18C109.5
C8i—C7—H7B119.2N1—C19—H19A109.5
H7A—C7—H7B106.7N1—C19—H19B109.5
C8i—C8—C974.0 (4)H19A—C19—H19B109.5
C8i—C8—C774.5 (4)N1—C19—H19C109.5
C9—C8—C7121.1 (7)H19A—C19—H19C109.5
C8i—C8—H8A66.5H19B—C19—H19C109.5
C18—N1—C1—C1i95.96 (18)C4—C5—C6—C6i99.4 (6)
C19—N1—C1—C1i34.6 (3)C4—C5—C6—C7163.1 (8)
C19i—N1—C1—C1i151.1 (3)C6i—C5—C6—C763.7 (13)
Br1—N1—C1—C1i30.35 (7)C5—C6—C7—C6i63.9 (13)
C18—N1—C1—C2i2.4 (19)C6i—C6—C7—C8118.7 (7)
C19—N1—C1—C2i132.9 (17)C5—C6—C7—C8177.4 (10)
C19i—N1—C1—C2i110.5 (18)C6i—C6—C7—C8i81.5 (9)
C1i—N1—C1—C2i98.3 (18)C5—C6—C7—C8i145.4 (9)
Br1—N1—C1—C2i68.0 (18)C6i—C7—C8—C8i84.7 (11)
C18—N1—C1—C275.7 (6)C6—C7—C8—C8i118.0 (10)
C19—N1—C1—C254.9 (8)C6i—C7—C8—C9144.6 (12)
C19i—N1—C1—C2171.4 (6)C6—C7—C8—C9177.9 (10)
C1i—N1—C1—C220.3 (6)C8i—C7—C8—C959.9 (8)
Br1—N1—C1—C210.1 (6)C7—C8—C9—C8i60.1 (8)
C2i—C1—C2—C1i180.000 (4)C8i—C8—C9—C10119.9 (6)
N1—C1—C2—C1i29.6 (9)C7—C8—C9—C10179.9 (7)
C1i—C1—C2—O1101.3 (7)C8i—C8—C9—C10i82.6 (6)
C2i—C1—C2—O178.7 (7)C7—C8—C9—C10i142.7 (7)
N1—C1—C2—O171.7 (8)C8i—C9—C10—C10i82.4 (6)
C1i—C1—C2—C2i180.000 (3)C8—C9—C10—C10i120.0 (7)
N1—C1—C2—C2i150.4 (9)C8i—C9—C10—C11142.0 (8)
C1i—C1—C2—C3141.1 (10)C8—C9—C10—C11179.6 (7)
C2i—C1—C2—C338.9 (10)C10i—C9—C10—C1159.6 (8)
N1—C1—C2—C3170.7 (7)C9—C10—C11—C10i59.9 (8)
C1i—C1—C2—C3i149.2 (8)C10i—C10—C11—C12120.0 (7)
C2i—C1—C2—C3i30.8 (8)C9—C10—C11—C12179.9 (7)
N1—C1—C2—C3i178.9 (6)C10i—C10—C11—C12i84.3 (7)
C4—O2—C3—C3i96.3 (6)C9—C10—C11—C12i144.2 (7)
C4—O2—C3—C2160.7 (11)C10i—C11—C12—C12i81.1 (7)
C3i—O2—C3—C2102.9 (16)C10—C11—C12—C12i120.6 (7)
C4—O2—C3—C2i147.2 (4)C10i—C11—C12—C13141.5 (8)
C3i—O2—C3—C2i50.9 (9)C10—C11—C12—C13179.0 (7)
C1i—C2—C3—C3i50.3 (13)C12i—C11—C12—C1360.4 (8)
O1—C2—C3—C3i94.5 (6)C11—C12—C13—C12i60.7 (8)
C2i—C2—C3—C3i0.000 (9)C12i—C12—C13—C1485.3 (10)
C1—C2—C3—C3i26.3 (6)C11—C12—C13—C14146.0 (10)
C1i—C2—C3—O233 (3)C12i—C12—C13—C14i118.0 (9)
O1—C2—C3—O2178.0 (14)C11—C12—C13—C14i178.6 (9)
C2i—C2—C3—O283.5 (17)C12i—C13—C14—C14i118.9 (7)
C1—C2—C3—O257.2 (19)C12—C13—C14—C14i80.9 (8)
C3i—C2—C3—O283.5 (17)C12i—C13—C14—C15177.5 (9)
C1i—C2—C3—C2i50.3 (13)C12—C13—C14—C15144.4 (9)
O1—C2—C3—C2i94.5 (6)C14i—C13—C14—C1563.5 (12)
C1—C2—C3—C2i26.3 (6)C14i—C14—C15—C16100.6 (6)
C3i—C2—C3—C2i0.000 (15)C13—C14—C15—C16164.2 (7)
C3i—O2—C4—C5166.3 (13)C13—C14—C15—C14i63.6 (12)
C3—O2—C4—C5166.3 (13)C14i—C15—C16—C17162.5 (9)
O2—C4—C5—C6163.4 (9)C14—C15—C16—C17162.5 (9)
O2—C4—C5—C6i163.4 (9)
Symmetry codes: (i) x, −y+1/2, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···Br10.852.413.207 (6)157.
C19—H19B···O1ii0.962.233.190 (6)176.
Symmetry codes: (ii) x+1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1D···Br10.852.413.207 (6)157.
C19—H19B···O1i0.962.233.190 (6)176.
Symmetry codes: (i) x+1, y, z.
Acknowledgements top

We acknowledge the National Natural Science Foundation of China (grant No. 21073081) for financial support.

references
References top

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fu, S., Wei, Z., Wei, X. & Wu, T. (2009). Acta Cryst. E65, o1836.

Koh, L. L., Xu, Y., Gan, L. M., Chew, C. H. & Lee, K. C. (1993). Acta Cryst. C49, 1032–1035.

Liu, J., Wei, Z., Wei, X. & Zhang, C. (2010). Acta Cryst. E66, o2865.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yin, B. L., Zhang, G. Y. & Wei, X. L. (1998). China Surfact. Deterg. Cosmet. 4, 18–22.