supplementary materials


cv5203 scheme

Acta Cryst. (2012). E68, o34    [ doi:10.1107/S1600536811051312 ]

(5S)-5-Methyl-3-phenyl-2-sulfanylidene-1,3-thiazolidin-4-one

J.-R. Jiang, F. Xu, Z.-L. Ke and L. Li

Abstract top

In the title molecule, C10H9NOS2, the 2-sulfanylidenethiazolidin-4-one mean plane and phenyl ring form a dihedral angle of 81.7 (1)°. In the crystal, C-H...[pi] interactions link molecules into helical chains in [010].

Comment top

2-sulfanylidenethiazolidin-4-one derivatives are known as compounds with potential antifungal activities (Zidar et al., 2010) and potential drugs-inhibitors of the HCV-RNA polymerase (Powers et al., 2006). Herewith we present the title compound (I), which is a new 2-sulfanylidenethiazolidin-4-one derivative.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds 3-(S)-(1-phenylethyl)-5-methyl-2-sulfanylidenethiazolidin-4-one (Rang et al., 1997) and 5-methyl-2-sulfanylidenethiazolidin-4-one (Gattow et al., 1983). The 2-sulfanylidenethiazolidin-4-one and phenyl rings form a dihedral angle of 81.7 (1)°. In the crystal structure, intermolecular C—H···π interactions (Table 1) link molecules into helical chains in [010].

Related literature top

For related structures, see: Gattow et al. (1983); Rang et al. (1997). For applications of 2-sulfanylidenethiazolidin-4-one derivatives, see: Zidar et al. (2010); Powers et al. (2006).

Experimental top

To 54 ml of concentrated ammonia in an ice-salt bath was added 13.95 g(0.15 mol) of benzylamine. carbon bisulfide 19.5 ml(24.6 g,0.323 mol) was added dropwise over a period 2 h and stirring continued for 4 h.The dithiocarbamate precipitated was allowed to stand overnight. It was filtered(warning:filtered to be immediately used), washed with cold ether and dried by suction. The sodium 2-bromopropionate solution was prepared by 15.3 g(0.1 mol) of 2-bromopropionic acid in 9 ml of water and 3.5 g(0.0875 mol)of sodium hydroxide in 6 ml of water,and adding saturated NaHCO3 solution until the solution was basic.The sodium 2-bromopropionate solution was stirred, cooled to 273 K and the dithiocarbamate added by batch about 10 min.After the mixture was stirred for 1 h at the same condition,it was allowed to warm up to r.t. and stand 30 min.Then a hot solution of concentrated HCl plus water(40 ml+27 ml)was added to it.The mixture was boiled for 10 min and cooled to r.t.The precipitate was filtered, washed with cold water and little cold ethanol.The crude product was recrystallized from ethanol to yield 13.6 g(61%) yellow needle-like compounds.

Refinement top

H atoms were placed in calculated positions [C—H = 0.95-1.00 Å] and refined in riding mode, with Uiso(H) = 1.2-1.5 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids.
(5S)-5-Methyl-3-phenyl-2-sulfanylidene-1,3-thiazolidin-4-one top
Crystal data top
C10H9NOS2F(000) = 464
Mr = 223.30Dx = 1.423 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3919 reflections
a = 6.8527 (4) Åθ = 2.3–29.1°
b = 8.6643 (5) ŵ = 0.48 mm1
c = 17.5572 (15) ÅT = 153 K
V = 1042.44 (12) Å3Block, colorless
Z = 40.30 × 0.20 × 0.18 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2777 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
graphiteRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 2.6°
phi and ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
k = 1110
Tmin = 0.872, Tmax = 0.919l = 2322
9028 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.086P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.014
2777 reflectionsΔρmax = 0.30 e Å3
128 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1155 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (6)
Crystal data top
C10H9NOS2V = 1042.44 (12) Å3
Mr = 223.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.8527 (4) ŵ = 0.48 mm1
b = 8.6643 (5) ÅT = 153 K
c = 17.5572 (15) Å0.30 × 0.20 × 0.18 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2777 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
2561 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.919Rint = 0.029
9028 measured reflectionsθmax = 29.1°
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.30 e Å3
S = 1.00Δρmin = 0.17 e Å3
2777 reflectionsAbsolute structure: Flack (1983), 1155 Friedel pairs
128 parametersFlack parameter: 0.01 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11471 (5)0.55991 (4)0.42516 (2)0.02375 (9)
S20.13997 (6)0.70725 (4)0.57733 (2)0.02665 (10)
O10.53389 (18)0.27885 (14)0.46834 (6)0.0334 (3)
N30.36082 (17)0.47158 (13)0.52694 (6)0.0177 (2)
C20.2145 (2)0.57762 (16)0.51556 (8)0.0186 (3)
C40.4056 (2)0.37374 (17)0.46629 (8)0.0212 (3)
C50.2751 (2)0.40173 (16)0.39840 (8)0.0204 (3)
H50.19370.30750.38990.025*
C60.3913 (2)0.4338 (2)0.32607 (8)0.0285 (3)
H6A0.48890.35250.31880.034*
H6B0.45690.53390.33060.034*
H6C0.30270.43570.28230.034*
C70.4603 (2)0.45370 (16)0.59871 (7)0.0184 (3)
C80.3715 (2)0.36714 (18)0.65529 (8)0.0246 (3)
H80.24510.32490.64760.030*
C90.4698 (3)0.34305 (19)0.72335 (9)0.0285 (4)
H90.41120.28290.76240.034*
C100.6522 (2)0.40624 (18)0.73445 (8)0.0280 (3)
H100.71780.39090.78150.034*
C110.7409 (2)0.4923 (2)0.67723 (9)0.0274 (3)
H110.86710.53480.68520.033*
C120.6448 (2)0.51620 (16)0.60833 (8)0.0226 (3)
H120.70450.57420.56870.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02356 (17)0.02662 (18)0.02108 (17)0.00623 (15)0.00460 (16)0.00175 (15)
S20.02865 (19)0.02565 (18)0.02565 (19)0.00662 (16)0.00106 (18)0.00678 (16)
O10.0377 (7)0.0365 (7)0.0259 (6)0.0192 (6)0.0044 (5)0.0058 (5)
N30.0179 (5)0.0197 (5)0.0155 (5)0.0002 (5)0.0008 (5)0.0004 (4)
C20.0180 (6)0.0183 (6)0.0194 (6)0.0016 (5)0.0012 (5)0.0008 (5)
C40.0225 (8)0.0226 (7)0.0186 (7)0.0013 (6)0.0004 (6)0.0003 (6)
C50.0230 (7)0.0198 (7)0.0186 (6)0.0002 (6)0.0007 (6)0.0027 (6)
C60.0301 (8)0.0347 (8)0.0208 (7)0.0031 (8)0.0021 (6)0.0006 (7)
C70.0216 (6)0.0182 (7)0.0154 (6)0.0014 (5)0.0005 (5)0.0012 (5)
C80.0227 (7)0.0286 (7)0.0227 (7)0.0028 (7)0.0021 (6)0.0003 (6)
C90.0374 (9)0.0291 (8)0.0189 (7)0.0009 (7)0.0043 (7)0.0031 (6)
C100.0355 (9)0.0292 (8)0.0193 (7)0.0057 (7)0.0065 (7)0.0017 (6)
C110.0254 (7)0.0281 (8)0.0286 (8)0.0028 (6)0.0078 (6)0.0007 (6)
C120.0243 (7)0.0205 (6)0.0231 (7)0.0025 (6)0.0008 (6)0.0023 (6)
Geometric parameters (Å, °) top
S1—C21.7350 (14)C6—H6C0.9800
S1—C51.8184 (15)C7—C121.3856 (19)
S2—C21.6427 (14)C7—C81.386 (2)
O1—C41.2043 (17)C8—C91.387 (2)
N3—C21.3746 (17)C8—H80.9500
N3—C41.3951 (18)C9—C101.379 (2)
N3—C71.4412 (17)C9—H90.9500
C4—C51.510 (2)C10—C111.391 (2)
C5—C61.5245 (19)C10—H100.9500
C5—H51.0000C11—C121.393 (2)
C6—H6A0.9800C11—H110.9500
C6—H6B0.9800C12—H120.9500
C2—S1—C593.72 (7)H6A—C6—H6C109.5
C2—N3—C4117.10 (11)H6B—C6—H6C109.5
C2—N3—C7122.96 (11)C12—C7—C8121.67 (13)
C4—N3—C7119.87 (12)C12—C7—N3119.76 (12)
N3—C2—S2126.00 (10)C8—C7—N3118.49 (13)
N3—C2—S1111.18 (10)C7—C8—C9119.05 (15)
S2—C2—S1122.82 (9)C7—C8—H8120.5
O1—C4—N3123.54 (13)C9—C8—H8120.5
O1—C4—C5124.46 (13)C10—C9—C8120.14 (15)
N3—C4—C5112.01 (12)C10—C9—H9119.9
C4—C5—C6112.18 (12)C8—C9—H9119.9
C4—C5—S1105.97 (10)C9—C10—C11120.47 (14)
C6—C5—S1113.16 (10)C9—C10—H10119.8
C4—C5—H5108.5C11—C10—H10119.8
C6—C5—H5108.5C10—C11—C12120.01 (15)
S1—C5—H5108.5C10—C11—H11120.0
C5—C6—H6A109.5C12—C11—H11120.0
C5—C6—H6B109.5C7—C12—C11118.64 (14)
H6A—C6—H6B109.5C7—C12—H12120.7
C5—C6—H6C109.5C11—C12—H12120.7
C4—N3—C2—S2178.34 (11)C2—S1—C5—C40.78 (10)
C7—N3—C2—S24.66 (19)C2—S1—C5—C6124.12 (11)
C4—N3—C2—S11.17 (15)C2—N3—C7—C12102.04 (16)
C7—N3—C2—S1175.83 (10)C4—N3—C7—C1281.04 (17)
C5—S1—C2—N30.14 (11)C2—N3—C7—C881.10 (18)
C5—S1—C2—S2179.39 (9)C4—N3—C7—C895.83 (16)
C2—N3—C4—O1177.98 (14)C12—C7—C8—C90.2 (2)
C7—N3—C4—O14.9 (2)N3—C7—C8—C9177.02 (13)
C2—N3—C4—C51.81 (17)C7—C8—C9—C100.8 (2)
C7—N3—C4—C5175.29 (12)C8—C9—C10—C111.1 (2)
O1—C4—C5—C654.3 (2)C9—C10—C11—C120.5 (2)
N3—C4—C5—C6125.48 (13)C8—C7—C12—C110.8 (2)
O1—C4—C5—S1178.26 (13)N3—C7—C12—C11177.60 (13)
N3—C4—C5—S11.53 (14)C10—C11—C12—C70.5 (2)
Hydrogen-bond geometry (Å, °) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cgi1.002.473.4321 (16)162
Symmetry codes: (i) x−1/2, −y+1/2, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cgi1.002.473.4321 (16)162
Symmetry codes: (i) x−1/2, −y+1/2, −z+1.
Acknowledgements top

We are very grateful to the Foundation of Taizhou Vocational and Technical College (grant No. 2010ZD09) for financial support.

references
References top

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Gattow, G., Kiel, G. & Rach, W. (1983). Z. Anorg. Allg. Chem. 506, 145-152.

Powers, J. P., Piper, D. E., Li, Y., Mayorga, V., Anzola, J., Chen, J. M., Jaen, J. C., Lee, G., Liu, J., Peterson, M. G., Tonn, G. R., Ye, Q., Walker, N. P. & Wang, Z. (2006). J. Med. Chem. 49,1034–1046.

Rang, K., Liao, F. L., Sandstorm, J. & Wang, S. L. (1997). Chirality, 9, 568-577.

Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Zidar, N., Tomašić, T., Šink, R., Rupnik, V., Kovač, A., Turk, S., Patin, D., Blanot, D., Martel, C. C., Dessen, A., Müller-Premru, M., Zega, A., Gobec, S., Mašić, L. P. & Kikelj, D. (2010). J. Med. Chem. 53, 6584-6594.