metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m14-m15

trans-Di­chloridobis[di­cyclo­hex­yl(4-iso­propyl­phen­yl)phosphane-κP]platinum(II) acetone monosolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 28 November 2011; accepted 1 December 2011; online 7 December 2011)

The title compound, [PtCl2(C21H33P)2]·C3H6O, crystallizes with an accompanying acetone solvent mol­ecule. The metal atom shows a distorted square-planar coordination environment, with a P—Pt—P angle of 172.41 (3)° as the most prominent feature. Both isopropyl fragments were treated as disordered over two conformations with occupancy ratios of 0.55 (2):0.45 (2) and 0.58 (2):0.42 (2). The solvent mol­ecule was also disordered over two orientations in a 1:1 ratio. The crystal studied was a non-merohedral twin with a twin component of 32.4%.

Related literature

For background to our investigation of the steric and electronic effects of group 15 ligands, see Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. J. (2003). Coord. Chem. Rev. 245, 121-137.]); Muller et al. (2006[Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794-5801.], 2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]). Examples of the packing disorder observed in Vaska-type complexes of Rh, Ir, Pd and Pt are given by Chen et al. (1991[Chen, Y.-J., Wang, J.-C. & Wang, Yu (1991). Acta Cryst. C47, 2441-2442.]), Kuwabara & Bau (1994[Kuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409-1411.]), Otto et al. (2000[Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.]) and Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]), respectively. For examples of Pt complexes with phospho­rus ligands in a trans orientation, see: Otto & Roodt (1997[Otto, S. & Roodt, A. (1997). Acta Cryst. C53, 280-282.]); Johansson et al. (2000[Johansson, M. H., Otto, S., Roodt, A. & Oskarsson, Å. (2000). Acta Cryst. B56, 226-233.]) and for examples of Pt complexes with phospho­rus ligands in a cis orientation, see: Otto & Muller (2001[Otto, S. & Muller, A. J. (2001). Acta Cryst. C57, 1405-1407.]), Otto & Johansson (2001[Otto, S. & Johansson, M. H. (2001). Inorg. Chim. Acta, 329, 135—140.]). For the analogous Rh complex containing a dicyclo­hex­yl(4- isopropyl­phen­yl)phosphane ligand, see: Makhoba et al. (2011[Makhoba, S., Muller, A., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m1286-m1287.]). For a description of the Cambridge Structural Database, see: (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For background to cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]). The twinned crystal was indexing using the CELL_NOW program (Bruker, 2008[Bruker (2008). TWINABS, CELL_NOW, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C21H33P)2]·C3H6O

  • Mr = 956.96

  • Triclinic, [P \overline 1]

  • a = 10.407 (2) Å

  • b = 15.075 (3) Å

  • c = 15.766 (3) Å

  • α = 88.81 (3)°

  • β = 88.33 (3)°

  • γ = 74.17 (3)°

  • V = 2378.5 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 7.40 mm−1

  • T = 293 K

  • 0.13 × 0.13 × 0.13 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2008[Bruker (2008). TWINABS, CELL_NOW, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.446, Tmax = 0.446

  • 7557 measured reflections

  • 7557 independent reflections

  • 7055 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.11

  • 7557 reflections

  • 557 parameters

  • 218 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). TWINABS, CELL_NOW, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). TWINABS, CELL_NOW, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dihalo-bisphosphane complexes of platinum(II) are well documented in the literature. These complexes form part of a class of symmetrical square-planar complexes that usually crystallize with the metal atom on a crystallographic inversion center, thus imposing a disordered packing arrangement (see Otto, 2001; Otto et al., 2000; Chen et al.,1991, Kuwabara & Bau, 1994 for examples on Rh, Ir, Pd and Pt, respectively). Very often the Pt complexes display a trans geometry (Otto & Roodt, 1997; Johansson et al., 2000), but some number with a cis geometry have also been reported (Otto & Muller, 2001; Otto & Johansson, 2001). Pt(II) complexes, along with the Vaska-type complexes, are useful model complexes and provide several probing methods, e.g. NMR and IR, to investigate the steric and electronic effects of novel group 15 ligands (Roodt et al., 2003; Muller et al., 2006; Muller et al., 2008). Reported here is the trans-[PtCl2{PCy2(4-C3H7—C6H4)}2] complex as a part of this ongoing study.

The title compound (Fig. 1) shows a packing arrangement of molecules lying in general positions in the unit cell, and thus no crystallographic symmetry imposed on the metal center as is usually observed with these complexes. The coordination environment of the Pt shows slight distortions from the ideal square-planar geometry. This deformation is most prominently observed in the P1—Pt1—P2 angle of 172.41 (3)°, whereas the Cl1—Pt1—Cl2 is almost linear at 178.94 (4)°. The metal complex is accompanied by an acetone solvate that had to be treated for disorder. Additionally the isopropyl moieties also showed large ellipsoid displacement parameters and were subsequently treated to individual disorder refinements.

An adaptation of the well known Tolman cone angle model (Tolman, 1977) was used for the determination of the phosphorus ligand bulkiness. Instead of using a CPK model, the actual geometry from the crystal structure was taken to determine an 'effective cone angle' (Otto et al. 2001). In addition the Pt—P distance was adjusted to 2.28 Å (the distance used by Tolman) to exclude deviations that the Pt—P bond may cause when comparing the steric values. Two almost similar cone angles of 165° and 166° were obtained for P1and P2 respectively, and compares reasonably to those obtained for the analogous Rh complex of this phosphorus ligand (Makhoba et al., 2011).

Related literature top

For background to our investigation of the steric and electronic effects of group 15 ligands, see Roodt et al. (2003); Muller et al. (2006, 2008). Examples of the packing disorder observed in Vaska-type complexes of Rh, Ir, Pd and Pt are given by Chen et al. (1991), Kuwabara & Bau (1994), Otto et al. (2000) and Otto (2001), respectively. For examples of Pt complexes with phosphorus ligands in a trans orientation, see: Otto & Roodt (1997); Johansson et al. (2000) and for examples of Pt complexes with phosphorus ligands in a cis orientation, see: Otto & Muller (2001), Otto & Johansson (2001). For the analogous Rh complex containing a dicyclohexyl(4- isopropylphenyl)phosphane ligand, see: Makhoba et al. (2011). For a description of the Cambridge Structural Database, see: (Allen, 2002). For background to cone angles, see: Tolman (1977). The twinned crsytal was indexing using the CELL_NOW program (Bruker, 2008).

Experimental top

Dichloro(1,5-cyclooctadiene)platinum(II), [PtCl2(COD)], and dicyclohexyl(4- isopropylphenyl)phosphane were purchased from Sigma-Aldrich and were used without purification. A solution of the phosphane (35 mg, 0.11 mmol) in acetone (5 ml) was added drop wise to a solution of [PtCl2 (COD)] (20 mg, 0.05 mmol) also in acetone (5 ml) while stirring at room temperature. This solution was evaporated, resulting in a yellow precipitate that was redissolved in acetone (10 ml). Slow evaporation of the solvent yielded crystals suitable for a single-crystal X-ray study.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00 Å (methine), 0.99 Å (methylene), 0.98 Å (methyl) and 0.95 Å (aromatic). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for the methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. Disorder refinement models were applied to both of the isopropyl fragments as well as the acetone solvate molecule. Several geometrical restraints (DFIX, DANG and FLAT) were applied. Values for DFIX and DANG parameters were obtained from averages of data mining searches from the Cambridge Structural Database (Allen, 2002; CSD ver. 5.32, August 2011 update). Ellipsoid displacement (SIMU and DELU) restraints were also applied to the disordered moieties. The occupation parameters of the two disordered isopropyls and the acetone were linked to free variables so that the two sites associated with each disorder would add to unity. Final occupancy ratios of 0.55:0.45 (2), 0.58:0.42 (2), 0.50:0.50 (3) were obtained. All restraints were applied with default standard deviations. Initial CheckCIF evaluation indicated possible non-merohedral twinning, and the data was subsequently treated using CELL_NOW (Bruker, 2008) to obtain orientation matrix of the two components. The raw data was then integrated as two components resulting in a HKLF5 format file, which greatly improved refinement parameters and yielded the refined composition of the twinned domains in a 32.4:67.6 ratio. The highest residual electron density 0.72 e.Å-3 was located 0.97 Å from Pt1, and the deepest hole of -0.75 e.Å-3 is 0.87 Å from Pt1. Both represent no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the numbering scheme of atoms and 50% probability displacement ellipsoids. Hydrogen atoms and the minor components of disordered parts are omitted for clarity.
trans-Dichloridobis[dicyclohexyl(4-isopropylphenyl)phosphane- κP]platinum(II) acetone monosolvate top
Crystal data top
[PtCl2(C21H33P)2]·C3H6OZ = 2
Mr = 956.96F(000) = 984
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 10.407 (2) ÅCell parameters from 9391 reflections
b = 15.075 (3) Åθ = 6.4–63.6°
c = 15.766 (3) ŵ = 7.40 mm1
α = 88.81 (3)°T = 293 K
β = 88.33 (3)°Cubic, yellow
γ = 74.17 (3)°0.13 × 0.13 × 0.13 mm
V = 2378.5 (8) Å3
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
7557 measured reflections
Radiation source: Incoatec IµS microfocus X-ray source7557 independent reflections
Incoatec Quazar Multilayer Mirror monochromator7055 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1θmax = 63.7°, θmin = 5.6°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(TWINABS; Bruker, 2008)
k = 1717
Tmin = 0.446, Tmax = 0.446l = 017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0238P)2 + 1.6789P]
where P = (Fo2 + 2Fc2)/3
7557 reflections(Δ/σ)max = 0.002
557 parametersΔρmax = 0.72 e Å3
218 restraintsΔρmin = 0.75 e Å3
Crystal data top
[PtCl2(C21H33P)2]·C3H6Oγ = 74.17 (3)°
Mr = 956.96V = 2378.5 (8) Å3
Triclinic, P1Z = 2
a = 10.407 (2) ÅCu Kα radiation
b = 15.075 (3) ŵ = 7.40 mm1
c = 15.766 (3) ÅT = 293 K
α = 88.81 (3)°0.13 × 0.13 × 0.13 mm
β = 88.33 (3)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
7557 measured reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2008)
7557 independent reflections
Tmin = 0.446, Tmax = 0.4467055 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.026218 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.11Δρmax = 0.72 e Å3
7557 reflectionsΔρmin = 0.75 e Å3
557 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 5967 frames were collected with a frame width of 1° covering up to θ = 63.73° with 96.4% completeness accomplished.

Analytical data: 31P {H} NMR (CDCl3, 160 MHz): δ = 21.29 (t, 1JPt—P = 2506 Hz, 2P)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.037592 (14)0.994590 (13)0.748013 (11)0.04399 (7)
P10.01993 (9)1.14101 (6)0.68968 (6)0.0418 (2)
P20.02439 (10)0.85413 (6)0.80698 (6)0.0432 (2)
Cl10.03139 (13)0.94136 (7)0.61250 (7)0.0659 (3)
Cl20.03981 (14)1.04956 (7)0.88342 (7)0.0660 (3)
C10.0814 (4)1.2182 (3)0.7558 (3)0.0494 (9)
C20.0177 (5)1.3110 (3)0.7643 (3)0.0656 (12)
H20.06071.33730.73560.079*
C30.0723 (7)1.3656 (4)0.8165 (4)0.0832 (17)
H30.02781.42770.82240.1*
C40.1908 (7)1.3294 (5)0.8595 (3)0.0879 (18)
C50.2539 (6)1.2381 (5)0.8483 (3)0.0815 (16)
H50.33431.21240.87510.098*
C60.2015 (5)1.1830 (4)0.7983 (3)0.0636 (12)
H60.24711.1210.79270.076*
C7A0.3262 (18)1.4409 (18)0.876 (2)0.097 (6)0.45 (2)
H7A10.35761.47630.91620.146*0.45 (2)
H7A20.29721.47820.8260.146*0.45 (2)
H7A30.39731.38780.86020.146*0.45 (2)
C8A0.210 (2)1.4100 (14)0.9143 (9)0.086 (6)0.45 (2)
H8A0.12881.46130.9160.103*0.45 (2)
C9A0.239 (3)1.3646 (16)1.0032 (13)0.118 (8)0.45 (2)
H9A10.3231.31761.00110.177*0.45 (2)
H9A20.16911.33751.02020.177*0.45 (2)
H9A30.24421.41051.04330.177*0.45 (2)
C7B0.268 (3)1.4679 (13)0.8831 (17)0.136 (8)0.55 (2)
H7B10.31671.46040.830.205*0.55 (2)
H7B20.30761.50060.92160.205*0.55 (2)
H7B30.17681.50210.8740.205*0.55 (2)
C8B0.2710 (15)1.3744 (10)0.9204 (9)0.083 (4)0.55 (2)
H8B0.35721.33590.93990.099*0.55 (2)
C9B0.161 (3)1.421 (2)0.9913 (17)0.176 (11)0.55 (2)
H9B10.20361.44371.0360.264*0.55 (2)
H9B20.12011.37531.01420.264*0.55 (2)
H9B30.09471.47050.96640.264*0.55 (2)
C100.1063 (4)1.1447 (3)0.5869 (3)0.0458 (9)
H100.06791.11070.54680.055*
C110.0853 (4)1.2419 (3)0.5505 (3)0.0586 (11)
H11A0.00961.27070.54490.07*
H11B0.11991.27840.58930.07*
C120.1548 (5)1.2412 (4)0.4643 (3)0.0662 (12)
H12A0.11311.21090.42380.079*
H12B0.14381.30420.44470.079*
C130.3016 (5)1.1922 (4)0.4674 (3)0.0741 (14)
H13A0.34571.22680.50230.089*
H13B0.34081.18920.41060.089*
C140.3238 (5)1.0952 (4)0.5039 (4)0.0832 (16)
H14A0.41891.06680.50850.1*
H14B0.28871.05870.46540.1*
C150.2562 (4)1.0950 (4)0.5911 (3)0.0653 (12)
H15A0.29781.12570.63130.078*
H15B0.26791.0320.61060.078*
C160.1595 (4)1.1997 (3)0.6715 (3)0.0484 (9)
H160.16681.26430.65660.058*
C170.2442 (4)1.1980 (4)0.7524 (3)0.0628 (12)
H17A0.21351.230.7970.075*
H17B0.23231.13450.7710.075*
C180.3934 (5)1.2436 (4)0.7382 (4)0.0773 (15)
H18A0.44391.23810.78980.093*
H18B0.40661.30870.72570.093*
C190.4455 (5)1.2000 (4)0.6665 (4)0.0807 (16)
H19A0.53851.23220.65760.097*
H19B0.441.13620.68080.097*
C200.3643 (5)1.2044 (4)0.5858 (4)0.0804 (16)
H20A0.37571.26840.56930.096*
H20B0.39671.17440.54050.096*
C210.2151 (4)1.1573 (4)0.5983 (3)0.0660 (13)
H21A0.20291.09210.60990.079*
H21B0.16561.16330.54640.079*
C220.0841 (4)0.7531 (3)0.7397 (3)0.0533 (10)
C230.1963 (5)0.7467 (3)0.6873 (3)0.0678 (12)
H230.23790.79410.6860.081*
C240.2460 (6)0.6698 (4)0.6371 (4)0.0872 (17)
H240.32120.66670.60280.105*
C250.1880 (7)0.5978 (4)0.6362 (4)0.0860 (17)
C260.0768 (7)0.6035 (3)0.6886 (4)0.0805 (17)
H260.03640.55550.68980.097*
C270.0243 (5)0.6806 (3)0.7398 (3)0.0609 (11)
H270.0510.68360.7740.073*
C28A0.306 (3)0.4329 (13)0.6221 (17)0.120 (9)0.42 (2)
H28A0.23280.42010.65390.18*0.42 (2)
H28B0.37330.43850.66040.18*0.42 (2)
H28C0.34310.38350.58370.18*0.42 (2)
C29A0.257 (3)0.5213 (13)0.5729 (13)0.104 (8)0.42 (2)
H29A0.32680.5370.53770.124*0.42 (2)
C30A0.145 (3)0.504 (2)0.521 (2)0.157 (12)0.42 (2)
H30A0.18260.46220.4760.236*0.42 (2)
H30B0.09210.56090.49780.236*0.42 (2)
H30C0.08920.47670.55720.236*0.42 (2)
C28B0.369 (2)0.459 (2)0.5965 (19)0.180 (12)0.58 (2)
H28D0.39170.40010.5690.269*0.58 (2)
H28E0.38650.44960.6560.269*0.58 (2)
H28F0.4230.4960.57210.269*0.58 (2)
C29B0.224 (2)0.5068 (12)0.5845 (11)0.118 (8)0.58 (2)
H29B0.1640.46750.59660.141*0.58 (2)
C30B0.230 (3)0.5352 (14)0.4902 (10)0.165 (11)0.58 (2)
H30D0.30770.55650.47960.248*0.58 (2)
H30E0.15140.58370.47720.248*0.58 (2)
H30F0.23430.4830.45530.248*0.58 (2)
C310.1547 (4)0.8613 (3)0.8346 (3)0.0529 (10)
H310.16040.79950.85170.063*
C320.2056 (5)0.9263 (4)0.9089 (3)0.0707 (14)
H32A0.19530.98690.89450.085*
H32B0.15280.90330.95840.085*
C330.3531 (5)0.9340 (5)0.9297 (4)0.0915 (19)
H33A0.36210.87430.94870.11*
H33B0.38360.9770.97580.11*
C340.4399 (5)0.9666 (5)0.8535 (4)0.0893 (17)
H34A0.53170.96820.86810.107*
H34B0.43731.02850.83730.107*
C350.3911 (5)0.9028 (5)0.7804 (4)0.0872 (17)
H35A0.44430.92630.73120.105*
H35B0.4030.84260.79480.105*
C360.2425 (4)0.8926 (4)0.7578 (3)0.0669 (12)
H36A0.21360.8480.71290.08*
H36B0.23210.95130.7370.08*
C370.1175 (4)0.8193 (3)0.9054 (3)0.0499 (9)
H370.07990.86760.94690.06*
C380.1019 (5)0.7284 (3)0.9450 (3)0.0626 (11)
H38A0.00790.73380.95610.075*
H38B0.13560.67880.90510.075*
C390.1774 (6)0.7053 (4)1.0273 (3)0.0748 (14)
H39A0.1360.75091.06950.09*
H39B0.17120.64571.04840.09*
C400.3235 (6)0.7030 (4)1.0157 (4)0.0810 (16)
H40A0.36780.65250.97890.097*
H40B0.36630.69221.07020.097*
C410.3392 (6)0.7933 (4)0.9772 (4)0.0868 (16)
H41A0.43330.78840.96730.104*
H41B0.30360.8431.01670.104*
C420.2655 (5)0.8157 (4)0.8929 (3)0.0690 (13)
H42A0.27310.87470.8710.083*
H42B0.30660.7690.85160.083*
C460.3293 (9)0.4367 (8)0.2435 (7)0.159 (3)
C47A0.408 (3)0.3606 (18)0.297 (2)0.236 (17)0.50 (3)
H47A0.45840.38450.33630.354*0.50 (3)
H47B0.46770.31570.26170.354*0.50 (3)
H47C0.34850.33210.32790.354*0.50 (3)
C45A0.379 (4)0.5040 (19)0.1990 (19)0.193 (12)0.50 (3)
H45A0.31190.53850.16120.289*0.50 (3)
H45B0.45770.47390.16680.289*0.50 (3)
H45C0.39970.54490.23880.289*0.50 (3)
O1A0.2100 (18)0.438 (3)0.234 (2)0.287 (17)0.50 (3)
C47B0.349 (4)0.3403 (15)0.267 (3)0.246 (17)0.50 (3)
H47D0.43930.31440.28440.368*0.50 (3)
H47E0.33120.30710.21970.368*0.50 (3)
H47F0.28880.33580.31360.368*0.50 (3)
C45B0.443 (3)0.439 (3)0.183 (2)0.239 (16)0.50 (3)
H45D0.41170.48260.13850.358*0.50 (3)
H45E0.480.37870.15990.358*0.50 (3)
H45F0.51130.45630.21360.358*0.50 (3)
O1B0.254 (4)0.5038 (19)0.273 (2)0.35 (2)0.50 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.05352 (10)0.04342 (10)0.03564 (10)0.01379 (8)0.00328 (8)0.00393 (6)
P10.0444 (5)0.0402 (5)0.0407 (5)0.0105 (4)0.0071 (4)0.0027 (4)
P20.0507 (5)0.0397 (5)0.0386 (5)0.0111 (4)0.0006 (4)0.0036 (4)
Cl10.1075 (8)0.0549 (6)0.0398 (6)0.0287 (6)0.0075 (5)0.0074 (4)
Cl20.1064 (8)0.0555 (6)0.0386 (6)0.0255 (6)0.0045 (5)0.0083 (4)
C10.058 (2)0.052 (2)0.042 (2)0.0203 (18)0.0018 (17)0.0065 (17)
C20.085 (3)0.055 (3)0.061 (3)0.024 (2)0.003 (2)0.011 (2)
C30.128 (5)0.063 (3)0.071 (4)0.049 (3)0.012 (3)0.016 (3)
C40.128 (5)0.112 (5)0.054 (3)0.081 (4)0.007 (3)0.010 (3)
C50.088 (4)0.112 (5)0.065 (3)0.059 (3)0.020 (3)0.004 (3)
C60.063 (3)0.072 (3)0.060 (3)0.023 (2)0.017 (2)0.001 (2)
C7A0.074 (9)0.101 (15)0.131 (13)0.048 (9)0.006 (9)0.044 (11)
C8A0.101 (12)0.103 (13)0.075 (9)0.060 (10)0.011 (8)0.026 (8)
C9A0.17 (2)0.136 (18)0.073 (10)0.077 (14)0.043 (11)0.020 (10)
C7B0.22 (2)0.094 (12)0.129 (14)0.097 (16)0.061 (15)0.004 (11)
C8B0.088 (9)0.073 (8)0.093 (9)0.030 (7)0.032 (6)0.009 (6)
C9B0.22 (2)0.22 (3)0.125 (16)0.132 (17)0.046 (14)0.116 (16)
C100.0449 (19)0.047 (2)0.045 (2)0.0120 (16)0.0055 (16)0.0039 (17)
C110.061 (2)0.060 (3)0.052 (3)0.013 (2)0.0007 (19)0.003 (2)
C120.078 (3)0.075 (3)0.051 (3)0.029 (2)0.003 (2)0.006 (2)
C130.070 (3)0.100 (4)0.059 (3)0.036 (3)0.008 (2)0.005 (3)
C140.060 (3)0.092 (4)0.085 (4)0.002 (3)0.018 (3)0.010 (3)
C150.051 (2)0.068 (3)0.070 (3)0.005 (2)0.002 (2)0.002 (2)
C160.046 (2)0.048 (2)0.050 (2)0.0098 (17)0.0083 (17)0.0025 (17)
C170.055 (2)0.078 (3)0.057 (3)0.020 (2)0.004 (2)0.012 (2)
C180.053 (2)0.095 (4)0.080 (4)0.013 (2)0.010 (2)0.014 (3)
C190.047 (2)0.101 (4)0.094 (4)0.019 (3)0.011 (2)0.004 (3)
C200.055 (3)0.107 (4)0.077 (4)0.017 (3)0.022 (2)0.005 (3)
C210.054 (2)0.089 (4)0.053 (3)0.015 (2)0.011 (2)0.015 (2)
C220.065 (2)0.045 (2)0.046 (2)0.0091 (19)0.0069 (19)0.0033 (18)
C230.072 (3)0.059 (3)0.067 (3)0.010 (2)0.013 (2)0.010 (2)
C240.095 (4)0.078 (4)0.071 (4)0.006 (3)0.020 (3)0.012 (3)
C250.117 (5)0.056 (3)0.065 (4)0.011 (3)0.004 (3)0.015 (3)
C260.123 (5)0.041 (3)0.077 (4)0.018 (3)0.018 (3)0.008 (2)
C270.079 (3)0.047 (2)0.054 (3)0.011 (2)0.005 (2)0.006 (2)
C28A0.18 (2)0.038 (8)0.116 (16)0.013 (11)0.015 (13)0.020 (8)
C29A0.168 (17)0.043 (8)0.083 (15)0.002 (11)0.013 (11)0.032 (7)
C30A0.20 (2)0.118 (19)0.13 (2)0.006 (15)0.030 (16)0.080 (16)
C28B0.175 (15)0.14 (2)0.160 (19)0.069 (15)0.010 (15)0.053 (15)
C29B0.144 (11)0.094 (14)0.093 (10)0.003 (10)0.008 (9)0.028 (9)
C30B0.25 (3)0.120 (14)0.078 (9)0.031 (14)0.013 (11)0.039 (8)
C310.052 (2)0.060 (3)0.050 (3)0.0199 (19)0.0091 (18)0.0065 (19)
C320.060 (3)0.096 (4)0.055 (3)0.019 (3)0.012 (2)0.025 (3)
C330.068 (3)0.126 (5)0.077 (4)0.022 (3)0.026 (3)0.024 (4)
C340.055 (3)0.105 (5)0.100 (5)0.010 (3)0.015 (3)0.011 (4)
C350.062 (3)0.116 (5)0.085 (4)0.024 (3)0.006 (3)0.015 (3)
C360.057 (2)0.087 (4)0.053 (3)0.013 (2)0.004 (2)0.009 (2)
C370.060 (2)0.049 (2)0.041 (2)0.0148 (18)0.0027 (17)0.0010 (17)
C380.078 (3)0.063 (3)0.050 (3)0.024 (2)0.010 (2)0.007 (2)
C390.102 (4)0.068 (3)0.051 (3)0.017 (3)0.010 (3)0.013 (2)
C400.086 (4)0.081 (4)0.066 (3)0.004 (3)0.026 (3)0.007 (3)
C410.077 (3)0.100 (4)0.086 (4)0.027 (3)0.028 (3)0.011 (3)
C420.062 (3)0.080 (3)0.068 (3)0.023 (2)0.011 (2)0.013 (3)
C460.112 (5)0.151 (7)0.200 (10)0.018 (6)0.020 (7)0.019 (7)
C47A0.24 (3)0.116 (18)0.37 (4)0.063 (18)0.07 (3)0.051 (19)
C45A0.22 (3)0.128 (19)0.25 (3)0.078 (19)0.00 (2)0.003 (16)
O1A0.137 (11)0.31 (4)0.42 (4)0.081 (16)0.014 (17)0.08 (3)
C47B0.19 (3)0.174 (14)0.37 (5)0.06 (2)0.02 (3)0.07 (2)
C45B0.17 (2)0.28 (4)0.25 (3)0.05 (2)0.053 (18)0.05 (3)
O1B0.30 (4)0.22 (2)0.43 (4)0.09 (2)0.12 (3)0.00 (2)
Geometric parameters (Å, º) top
Pt1—Cl12.3065 (12)C24—C251.379 (9)
Pt1—Cl22.3090 (12)C24—H240.93
Pt1—P22.3315 (11)C25—C261.387 (9)
Pt1—P12.3358 (11)C25—C29A1.547 (16)
P1—C11.829 (4)C25—C29B1.561 (15)
P1—C101.838 (4)C26—C271.404 (7)
P1—C161.863 (4)C26—H260.93
P2—C221.828 (4)C27—H270.93
P2—C371.844 (4)C28A—C29A1.500 (18)
P2—C311.877 (4)C28A—H28A0.96
C1—C21.383 (6)C28A—H28B0.96
C1—C61.402 (6)C28A—H28C0.96
C2—C31.410 (7)C29A—C30A1.525 (19)
C2—H20.93C29A—H29A0.98
C3—C41.394 (9)C30A—H30A0.96
C3—H30.93C30A—H30B0.96
C4—C51.367 (9)C30A—H30C0.96
C4—C8A1.566 (14)C28B—C29B1.509 (18)
C4—C8B1.570 (12)C28B—H28D0.96
C5—C61.382 (6)C28B—H28E0.96
C5—H50.93C28B—H28F0.96
C6—H60.93C29B—C30B1.542 (18)
C7A—C8A1.515 (16)C29B—H29B0.98
C7A—H7A10.96C30B—H30D0.96
C7A—H7A20.96C30B—H30E0.96
C7A—H7A30.96C30B—H30F0.96
C8A—C9A1.547 (17)C31—C361.525 (6)
C8A—H8A0.98C31—C321.530 (6)
C9A—H9A10.96C31—H310.98
C9A—H9A20.96C32—C331.533 (7)
C9A—H9A30.96C32—H32A0.97
C7B—C8B1.507 (16)C32—H32B0.97
C7B—H7B10.96C33—C341.517 (9)
C7B—H7B20.96C33—H33A0.97
C7B—H7B30.96C33—H33B0.97
C8B—C9B1.600 (17)C34—C351.503 (8)
C8B—H8B0.98C34—H34A0.97
C9B—H9B10.96C34—H34B0.97
C9B—H9B20.96C35—C361.544 (7)
C9B—H9B30.96C35—H35A0.97
C10—C111.525 (6)C35—H35B0.97
C10—C151.538 (6)C36—H36A0.97
C10—H100.98C36—H36B0.97
C11—C121.519 (6)C37—C421.533 (6)
C11—H11A0.97C37—C381.540 (6)
C11—H11B0.97C37—H370.98
C12—C131.506 (7)C38—C391.522 (6)
C12—H12A0.97C38—H38A0.97
C12—H12B0.97C38—H38B0.97
C13—C141.519 (8)C39—C401.517 (8)
C13—H13A0.97C39—H39A0.97
C13—H13B0.97C39—H39B0.97
C14—C151.526 (7)C40—C411.526 (8)
C14—H14A0.97C40—H40A0.97
C14—H14B0.97C40—H40B0.97
C15—H15A0.97C41—C421.539 (7)
C15—H15B0.97C41—H41A0.97
C16—C211.532 (6)C41—H41B0.97
C16—C171.533 (6)C42—H42A0.97
C16—H160.98C42—H42B0.97
C17—C181.539 (7)C46—O1B1.193 (14)
C17—H17A0.97C46—O1A1.249 (14)
C17—H17B0.97C46—C45A1.420 (15)
C18—C191.505 (7)C46—C47B1.455 (16)
C18—H18A0.97C46—C47A1.479 (16)
C18—H18B0.97C46—C45B1.503 (16)
C19—C201.516 (8)C47A—H47A0.96
C19—H19A0.97C47A—H47B0.96
C19—H19B0.97C47A—H47C0.96
C20—C211.537 (6)C45A—H45A0.96
C20—H20A0.97C45A—H45B0.96
C20—H20B0.97C45A—H45C0.96
C21—H21A0.97C47B—H47D0.96
C21—H21B0.97C47B—H47E0.96
C22—C231.393 (7)C47B—H47F0.96
C22—C271.397 (6)C45B—H45D0.96
C23—C241.388 (7)C45B—H45E0.96
C23—H230.93C45B—H45F0.96
Cl1—Pt1—Cl2178.94 (4)C25—C24—H24118.8
Cl1—Pt1—P291.33 (4)C23—C24—H24118.8
Cl2—Pt1—P288.98 (4)C24—C25—C26117.7 (5)
Cl1—Pt1—P188.54 (4)C24—C25—C29A113.6 (13)
Cl2—Pt1—P191.02 (4)C26—C25—C29A128.7 (13)
P2—Pt1—P1172.41 (3)C24—C25—C29B131.6 (10)
C1—P1—C10103.70 (19)C26—C25—C29B110.7 (10)
C1—P1—C16106.24 (19)C25—C26—C27120.9 (5)
C10—P1—C16105.70 (18)C25—C26—H26119.6
C1—P1—Pt1115.25 (14)C27—C26—H26119.6
C10—P1—Pt1116.19 (13)C22—C27—C26120.6 (5)
C16—P1—Pt1108.92 (14)C22—C27—H27119.7
C22—P2—C37103.27 (19)C26—C27—H27119.7
C22—P2—C31105.9 (2)C28A—C29A—C30A103 (3)
C37—P2—C31106.2 (2)C28A—C29A—C25108.0 (17)
C22—P2—Pt1116.34 (15)C30A—C29A—C25105.8 (17)
C37—P2—Pt1115.10 (14)C28A—C29A—H29A113.1
C31—P2—Pt1109.17 (15)C30A—C29A—H29A113.1
C2—C1—C6117.6 (4)C25—C29A—H29A113.1
C2—C1—P1123.4 (3)C29B—C28B—H28D109.5
C6—C1—P1118.9 (3)C29B—C28B—H28E109.5
C1—C2—C3119.7 (5)H28D—C28B—H28E109.5
C1—C2—H2120.2C29B—C28B—H28F109.5
C3—C2—H2120.2H28D—C28B—H28F109.5
C4—C3—C2122.1 (5)H28E—C28B—H28F109.5
C4—C3—H3118.9C28B—C29B—C30B99 (3)
C2—C3—H3118.9C28B—C29B—C25108.1 (16)
C5—C4—C3117.2 (5)C30B—C29B—C25106.5 (14)
C5—C4—C8A136.9 (11)C28B—C29B—H29B113.9
C3—C4—C8A105.8 (10)C30B—C29B—H29B113.9
C5—C4—C8B110.8 (8)C25—C29B—H29B113.9
C3—C4—C8B132.0 (8)C29B—C30B—H30D109.5
C4—C5—C6121.7 (5)C29B—C30B—H30E109.5
C4—C5—H5119.1H30D—C30B—H30E109.5
C6—C5—H5119.1C29B—C30B—H30F109.5
C5—C6—C1121.7 (5)H30D—C30B—H30F109.5
C5—C6—H6119.2H30E—C30B—H30F109.5
C1—C6—H6119.2C36—C31—C32110.3 (4)
C7A—C8A—C9A113 (3)C36—C31—P2110.8 (3)
C7A—C8A—C4107.9 (16)C32—C31—P2111.0 (3)
C9A—C8A—C4102.9 (15)C36—C31—H31108.2
C7A—C8A—H8A110.8C32—C31—H31108.2
C9A—C8A—H8A110.8P2—C31—H31108.2
C4—C8A—H8A110.8C31—C32—C33110.9 (4)
C8B—C7B—H7B1109.5C31—C32—H32A109.5
C8B—C7B—H7B2109.5C33—C32—H32A109.5
H7B1—C7B—H7B2109.5C31—C32—H32B109.5
C8B—C7B—H7B3109.5C33—C32—H32B109.5
H7B1—C7B—H7B3109.5H32A—C32—H32B108
H7B2—C7B—H7B3109.5C34—C33—C32111.7 (5)
C7B—C8B—C4106.7 (14)C34—C33—H33A109.3
C7B—C8B—C9B91 (2)C32—C33—H33A109.3
C4—C8B—C9B103.0 (12)C34—C33—H33B109.3
C7B—C8B—H8B117.4C32—C33—H33B109.3
C4—C8B—H8B117.4H33A—C33—H33B107.9
C9B—C8B—H8B117.4C35—C34—C33110.1 (5)
C8B—C9B—H9B1109.5C35—C34—H34A109.6
C8B—C9B—H9B2109.5C33—C34—H34A109.6
H9B1—C9B—H9B2109.5C35—C34—H34B109.6
C8B—C9B—H9B3109.5C33—C34—H34B109.6
H9B1—C9B—H9B3109.5H34A—C34—H34B108.2
H9B2—C9B—H9B3109.5C34—C35—C36112.0 (4)
C11—C10—C15110.5 (4)C34—C35—H35A109.2
C11—C10—P1113.5 (3)C36—C35—H35A109.2
C15—C10—P1111.8 (3)C34—C35—H35B109.2
C11—C10—H10106.9C36—C35—H35B109.2
C15—C10—H10106.9H35A—C35—H35B107.9
P1—C10—H10106.9C31—C36—C35111.5 (4)
C12—C11—C10111.5 (4)C31—C36—H36A109.3
C12—C11—H11A109.3C35—C36—H36A109.3
C10—C11—H11A109.3C31—C36—H36B109.3
C12—C11—H11B109.3C35—C36—H36B109.3
C10—C11—H11B109.3H36A—C36—H36B108
H11A—C11—H11B108C42—C37—C38110.8 (4)
C13—C12—C11112.0 (4)C42—C37—P2111.7 (3)
C13—C12—H12A109.2C38—C37—P2113.9 (3)
C11—C12—H12A109.2C42—C37—H37106.7
C13—C12—H12B109.2C38—C37—H37106.7
C11—C12—H12B109.2P2—C37—H37106.7
H12A—C12—H12B107.9C39—C38—C37111.2 (4)
C12—C13—C14111.0 (4)C39—C38—H38A109.4
C12—C13—H13A109.4C37—C38—H38A109.4
C14—C13—H13A109.4C39—C38—H38B109.4
C12—C13—H13B109.4C37—C38—H38B109.4
C14—C13—H13B109.4H38A—C38—H38B108
H13A—C13—H13B108C40—C39—C38112.1 (4)
C13—C14—C15112.0 (4)C40—C39—H39A109.2
C13—C14—H14A109.2C38—C39—H39A109.2
C15—C14—H14A109.2C40—C39—H39B109.2
C13—C14—H14B109.2C38—C39—H39B109.2
C15—C14—H14B109.2H39A—C39—H39B107.9
H14A—C14—H14B107.9C39—C40—C41111.4 (4)
C14—C15—C10110.5 (4)C39—C40—H40A109.4
C14—C15—H15A109.6C41—C40—H40A109.4
C10—C15—H15A109.6C39—C40—H40B109.4
C14—C15—H15B109.6C41—C40—H40B109.4
C10—C15—H15B109.6H40A—C40—H40B108
H15A—C15—H15B108.1C40—C41—C42110.9 (5)
C21—C16—C17109.8 (4)C40—C41—H41A109.5
C21—C16—P1112.3 (3)C42—C41—H41A109.5
C17—C16—P1110.9 (3)C40—C41—H41B109.5
C21—C16—H16107.9C42—C41—H41B109.5
C17—C16—H16107.9H41A—C41—H41B108.1
P1—C16—H16107.9C37—C42—C41110.8 (4)
C16—C17—C18111.9 (4)C37—C42—H42A109.5
C16—C17—H17A109.2C41—C42—H42A109.5
C18—C17—H17A109.2C37—C42—H42B109.5
C16—C17—H17B109.2C41—C42—H42B109.5
C18—C17—H17B109.2H42A—C42—H42B108.1
H17A—C17—H17B107.9O1B—C46—O1A68.0 (18)
C19—C18—C17111.8 (4)O1B—C46—C45A81.9 (18)
C19—C18—H18A109.2O1A—C46—C45A118.3 (18)
C17—C18—H18A109.2O1B—C46—C47B129 (2)
C19—C18—H18B109.2O1A—C46—C47B85.2 (17)
C17—C18—H18B109.2C45A—C46—C47B148 (2)
H18A—C18—H18B107.9O1B—C46—C47A122 (2)
C18—C19—C20110.1 (4)O1A—C46—C47A115.4 (17)
C18—C19—H19A109.6C45A—C46—C47A126.2 (18)
C20—C19—H19A109.6O1B—C46—C45B124 (2)
C18—C19—H19B109.6O1A—C46—C45B134 (2)
C20—C19—H19B109.6C47B—C46—C45B105.7 (19)
H19A—C19—H19B108.2C47A—C46—C45B95 (2)
C19—C20—C21111.3 (4)C46—C47A—H47A109.5
C19—C20—H20A109.4C46—C47A—H47B109.5
C21—C20—H20A109.4C46—C47A—H47C109.5
C19—C20—H20B109.4C46—C45A—H45A109.5
C21—C20—H20B109.4C46—C45A—H45B109.5
H20A—C20—H20B108C46—C45A—H45C109.5
C16—C21—C20111.7 (4)C46—C47B—H47D109.5
C16—C21—H21A109.3C46—C47B—H47E109.5
C20—C21—H21A109.3H47D—C47B—H47E109.5
C16—C21—H21B109.3C46—C47B—H47F109.5
C20—C21—H21B109.3H47D—C47B—H47F109.5
H21A—C21—H21B107.9H47E—C47B—H47F109.5
C23—C22—C27118.2 (4)C46—C45B—H45D109.5
C23—C22—P2118.7 (3)C46—C45B—H45E109.5
C27—C22—P2123.1 (3)H45D—C45B—H45E109.5
C24—C23—C22120.1 (5)C46—C45B—H45F109.5
C24—C23—H23120H45D—C45B—H45F109.5
C22—C23—H23120H45E—C45B—H45F109.5
C25—C24—C23122.5 (5)
Cl1—Pt1—P1—C1157.29 (15)C16—C17—C18—C1955.9 (6)
Cl2—Pt1—P1—C123.67 (15)C17—C18—C19—C2056.7 (7)
Cl1—Pt1—P1—C1035.71 (14)C18—C19—C20—C2157.1 (7)
Cl2—Pt1—P1—C10145.25 (14)C17—C16—C21—C2054.3 (6)
Cl1—Pt1—P1—C1683.46 (15)P1—C16—C21—C20178.2 (4)
Cl2—Pt1—P1—C1695.57 (15)C19—C20—C21—C1656.9 (6)
Cl1—Pt1—P2—C2224.79 (16)C37—P2—C22—C2389.4 (4)
Cl2—Pt1—P2—C22156.22 (16)C31—P2—C22—C23159.2 (4)
Cl1—Pt1—P2—C37145.77 (15)Pt1—P2—C22—C2337.7 (4)
Cl2—Pt1—P2—C3735.24 (15)C37—P2—C22—C2789.2 (4)
Cl1—Pt1—P2—C3194.97 (15)C31—P2—C22—C2722.3 (4)
Cl2—Pt1—P2—C3184.02 (15)Pt1—P2—C22—C27143.8 (3)
C10—P1—C1—C292.3 (4)C27—C22—C23—C240.2 (7)
C16—P1—C1—C218.9 (4)P2—C22—C23—C24178.4 (4)
Pt1—P1—C1—C2139.6 (3)C22—C23—C24—C250.4 (9)
C10—P1—C1—C685.6 (4)C23—C24—C25—C260.7 (9)
C16—P1—C1—C6163.3 (4)C23—C24—C25—C29A177.7 (10)
Pt1—P1—C1—C642.5 (4)C23—C24—C25—C29B178.5 (10)
C6—C1—C2—C31.9 (7)C24—C25—C26—C270.9 (8)
P1—C1—C2—C3179.9 (4)C29A—C25—C26—C27177.2 (11)
C1—C2—C3—C41.0 (8)C29B—C25—C26—C27178.5 (8)
C2—C3—C4—C50.8 (9)C23—C22—C27—C260.4 (7)
C2—C3—C4—C8A176.2 (7)P2—C22—C27—C26178.2 (4)
C2—C3—C4—C8B179.9 (8)C25—C26—C27—C220.7 (8)
C3—C4—C5—C61.5 (9)C24—C25—C29A—C28A120 (2)
C8A—C4—C5—C6174.1 (10)C26—C25—C29A—C28A62 (3)
C8B—C4—C5—C6179.0 (7)C29B—C25—C29A—C28A58 (4)
C4—C5—C6—C10.6 (9)C24—C25—C29A—C30A130 (2)
C2—C1—C6—C51.2 (7)C26—C25—C29A—C30A48 (3)
P1—C1—C6—C5179.2 (4)C29B—C25—C29A—C30A52 (4)
C5—C4—C8A—C7A75 (2)C24—C25—C29B—C28B53 (2)
C3—C4—C8A—C7A109 (2)C26—C25—C29B—C28B128 (2)
C8B—C4—C8A—C7A65 (3)C29A—C25—C29B—C28B55 (4)
C5—C4—C8A—C9A45 (2)C24—C25—C29B—C30B53 (2)
C3—C4—C8A—C9A130.7 (19)C26—C25—C29B—C30B126.1 (19)
C8B—C4—C8A—C9A56 (2)C29A—C25—C29B—C30B51 (4)
C5—C4—C8B—C7B138.5 (17)C22—P2—C31—C3672.3 (4)
C3—C4—C8B—C7B41 (2)C37—P2—C31—C36178.3 (3)
C8A—C4—C8B—C7B49 (2)Pt1—P2—C31—C3653.7 (3)
C5—C4—C8B—C9B126.5 (18)C22—P2—C31—C32164.8 (4)
C3—C4—C8B—C9B54 (2)C37—P2—C31—C3255.4 (4)
C8A—C4—C8B—C9B46 (2)Pt1—P2—C31—C3269.2 (4)
C1—P1—C10—C1155.2 (3)C36—C31—C32—C3355.3 (6)
C16—P1—C10—C1156.4 (3)P2—C31—C32—C33178.5 (4)
Pt1—P1—C10—C11177.3 (2)C31—C32—C33—C3457.2 (7)
C1—P1—C10—C1570.6 (3)C32—C33—C34—C3556.9 (7)
C16—P1—C10—C15177.8 (3)C33—C34—C35—C3655.7 (7)
Pt1—P1—C10—C1556.9 (3)C32—C31—C36—C3554.3 (6)
C15—C10—C11—C1255.4 (5)P2—C31—C36—C35177.6 (4)
P1—C10—C11—C12178.2 (3)C34—C35—C36—C3155.4 (7)
C10—C11—C12—C1355.6 (5)C22—P2—C37—C4271.8 (4)
C11—C12—C13—C1454.8 (6)C31—P2—C37—C42177.0 (3)
C12—C13—C14—C1555.3 (6)Pt1—P2—C37—C4256.1 (4)
C13—C14—C15—C1055.7 (6)C22—P2—C37—C3854.7 (4)
C11—C10—C15—C1455.3 (5)C31—P2—C37—C3856.6 (4)
P1—C10—C15—C14177.3 (4)Pt1—P2—C37—C38177.5 (3)
C1—P1—C16—C21164.2 (3)C42—C37—C38—C3954.9 (5)
C10—P1—C16—C2154.5 (4)P2—C37—C38—C39178.2 (3)
Pt1—P1—C16—C2171.0 (3)C37—C38—C39—C4054.7 (6)
C1—P1—C16—C1772.5 (3)C38—C39—C40—C4155.2 (6)
C10—P1—C16—C17177.8 (3)C39—C40—C41—C4255.7 (7)
Pt1—P1—C16—C1752.3 (3)C38—C37—C42—C4155.9 (6)
C21—C16—C17—C1853.6 (5)P2—C37—C42—C41175.9 (4)
P1—C16—C17—C18178.3 (3)C40—C41—C42—C3756.4 (7)

Experimental details

Crystal data
Chemical formula[PtCl2(C21H33P)2]·C3H6O
Mr956.96
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.407 (2), 15.075 (3), 15.766 (3)
α, β, γ (°)88.81 (3), 88.33 (3), 74.17 (3)
V3)2378.5 (8)
Z2
Radiation typeCu Kα
µ (mm1)7.40
Crystal size (mm)0.13 × 0.13 × 0.13
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS; Bruker, 2008)
Tmin, Tmax0.446, 0.446
No. of measured, independent and
observed [I > 2σ(I)] reflections
7557, 7557, 7055
Rint?
(sin θ/λ)max1)0.582
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.11
No. of reflections7557
No. of parameters557
No. of restraints218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.75

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

Research funds of the University of Johannesburg is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). TWINABS, CELL_NOW, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-J., Wang, J.-C. & Wang, Yu (1991). Acta Cryst. C47, 2441–2442.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJohansson, M. H., Otto, S., Roodt, A. & Oskarsson, Å. (2000). Acta Cryst. B56, 226–233.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409–1411.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMakhoba, S., Muller, A., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m1286–m1287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S. & Johansson, M. H. (2001). Inorg. Chim. Acta, 329, 135—140.  Google Scholar
First citationOtto, S. & Muller, A. J. (2001). Acta Cryst. C57, 1405–1407.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S. & Roodt, A. (1997). Acta Cryst. C53, 280–282.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. J. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m14-m15
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds