supplementary materials


cv5211 scheme

Acta Cryst. (2012). E68, o83    [ doi:10.1107/S1600536811052159 ]

3-Benzylsulfanyl-1H-1,2,4-triazol-5-amine

S. Zhang, P.-J. Liu, D.-S. Ma and G.-F. Hou

Abstract top

In the title molecule, C9H10N4S, the dihedral angle between the benzene and triazole rings is 81.05 (5)°. In the crystal, N-H...N hydrogen bonds link the molecules into infinite zigzag chains along [010].

Comment top

We are paying attention to the synthesis and applications of substituted 1,2,4-triazoles due to their comprehensive biological activities such as antihypertensive, antifungal and antibacterial properties (Paulvannan et al., 2001; El-Sagheer et al., 2011). Herein, we report the synthesis and crystal structure of the title compound (I).

In (I) (Fig. 1), the benzene and triazole rings form a dihedral angle of 81.05 (5)°. In the crystal packing, the N—H···N hydrogen bonds (Table 1) link adjacent molecules into infinite zigzag chains along [010] (Fig. 2).

Related literature top

For the biological properties of 1,2,4-triazoles derivatives, see: Paulvannan et al. (2001); El-Sagheer & Brown (2011).

Experimental top

In aqueous (10 mL) solution of NaOH (0.40 g, 0.010 mol) and 5-amino-1H-1,2,4-triazole-3-thiol (1.16 g, 0.010 mol, commercial product) was added an ethanol (20 mL) solution of benzyl chloride (1.52 g, 0.012 mol) with stirring. After stirring for 10 min, the solution evaporated. Then the resulting precipitate was filtered off, diluted with water and purified to give the title compound. Colourless prismatic crystal suitable for X-ray analysis were obtained by recrystallization in chloroform solution.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C). N-bound H atom were found from Fourier map, and were refined with restraint N—H = 0.90 (1) Å and Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probabilty displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen-bonded (dashed lines) chains. C-bound H atoms omitted for clarity.
3-Benzylsulfanyl-1H-1,2,4-triazol-5-amine top
Crystal data top
C9H10N4SF(000) = 432
Mr = 206.27Dx = 1.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6282 reflections
a = 9.870 (2) Åθ = 3.5–27.5°
b = 9.6370 (19) ŵ = 0.29 mm1
c = 10.398 (2) ÅT = 293 K
β = 90.18 (3)°Block, colorless
V = 989.0 (3) Å30.38 × 0.26 × 0.11 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2267 independent reflections
Radiation source: fine-focus sealed tube1372 reflections with I > 2σ(I)
graphiteRint = 0.059
ω scanθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.897, Tmax = 0.970k = 1212
9367 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.1013P]
where P = (Fo2 + 2Fc2)/3
2267 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.26 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H10N4SV = 989.0 (3) Å3
Mr = 206.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.870 (2) ŵ = 0.29 mm1
b = 9.6370 (19) ÅT = 293 K
c = 10.398 (2) Å0.38 × 0.26 × 0.11 mm
β = 90.18 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2267 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1372 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.970Rint = 0.059
9367 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111Δρmax = 0.26 e Å3
S = 1.04Δρmin = 0.25 e Å3
2267 reflectionsAbsolute structure: ?
136 parametersFlack parameter: ?
3 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9298 (2)0.2955 (2)0.45864 (19)0.0424 (5)
C21.0473 (2)0.2171 (2)0.4593 (2)0.0510 (6)
H21.05360.14020.51310.061*
C31.1549 (3)0.2511 (3)0.3816 (2)0.0598 (7)
H31.23290.19690.38230.072*
C41.1468 (3)0.3657 (3)0.3029 (2)0.0606 (7)
H41.21980.38960.25100.073*
C51.0312 (3)0.4446 (3)0.3008 (2)0.0564 (6)
H51.02560.52140.24690.068*
C60.9232 (2)0.4102 (2)0.3784 (2)0.0501 (6)
H60.84530.46440.37690.060*
C70.8148 (2)0.2577 (3)0.5473 (2)0.0541 (6)
H7A0.75100.33410.54950.065*
H7B0.85060.24560.63350.065*
C80.6212 (2)0.1615 (2)0.3776 (2)0.0442 (5)
C90.4869 (2)0.1511 (2)0.2191 (2)0.0462 (6)
N10.5965 (2)0.29303 (18)0.3524 (2)0.0541 (5)
N20.5088 (2)0.28358 (17)0.2498 (2)0.0539 (5)
H210.473 (3)0.3613 (18)0.216 (2)0.081*
N30.55663 (18)0.06938 (16)0.29881 (19)0.0460 (5)
N40.4055 (2)0.1079 (2)0.1236 (2)0.0665 (6)
H410.404 (3)0.0173 (12)0.107 (3)0.100*
H420.368 (3)0.167 (3)0.068 (2)0.100*
S10.72492 (7)0.10082 (6)0.50093 (7)0.0582 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0478 (13)0.0408 (11)0.0385 (11)0.0047 (9)0.0002 (10)0.0064 (10)
C20.0548 (15)0.0433 (13)0.0548 (14)0.0000 (10)0.0025 (12)0.0058 (11)
C30.0481 (15)0.0580 (15)0.0735 (16)0.0027 (12)0.0074 (13)0.0032 (13)
C40.0516 (16)0.0676 (17)0.0625 (15)0.0123 (13)0.0078 (12)0.0057 (14)
C50.0657 (18)0.0511 (14)0.0522 (14)0.0083 (12)0.0014 (13)0.0119 (12)
C60.0508 (14)0.0453 (12)0.0543 (13)0.0016 (10)0.0055 (11)0.0007 (11)
C70.0587 (16)0.0511 (13)0.0525 (13)0.0024 (11)0.0059 (12)0.0027 (11)
C80.0382 (12)0.0273 (10)0.0672 (14)0.0003 (9)0.0137 (11)0.0022 (10)
C90.0393 (12)0.0266 (10)0.0728 (15)0.0016 (9)0.0111 (11)0.0016 (11)
N10.0525 (13)0.0264 (9)0.0834 (14)0.0016 (8)0.0020 (11)0.0027 (9)
N20.0495 (12)0.0245 (9)0.0876 (15)0.0002 (8)0.0015 (11)0.0035 (9)
N30.0400 (10)0.0226 (8)0.0753 (13)0.0012 (7)0.0092 (9)0.0002 (9)
N40.0709 (16)0.0374 (11)0.0912 (17)0.0030 (10)0.0166 (13)0.0004 (12)
S10.0576 (4)0.0398 (3)0.0774 (5)0.0023 (3)0.0053 (3)0.0130 (3)
Geometric parameters (Å, °) top
C1—C21.384 (3)C7—H7A0.9700
C1—C61.386 (3)C7—H7B0.9700
C1—C71.509 (3)C8—N11.317 (3)
C2—C31.377 (3)C8—N31.365 (3)
C2—H20.9300C8—S11.740 (2)
C3—C41.376 (3)C9—N31.333 (3)
C3—H30.9300C9—N21.334 (3)
C4—C51.371 (4)C9—N41.342 (3)
C4—H40.9300N1—N21.375 (3)
C5—C61.380 (3)N2—H210.900 (10)
C5—H50.9300N4—H420.892 (10)
C6—H60.9300N4—H410.889 (10)
C7—S11.817 (2)N4—H420.892 (10)
C2—C1—C6118.5 (2)C1—C7—H7B108.8
C2—C1—C7119.8 (2)S1—C7—H7B108.8
C6—C1—C7121.7 (2)H7A—C7—H7B107.6
C3—C2—C1121.0 (2)N1—C8—N3114.9 (2)
C3—C2—H2119.5N1—C8—S1125.35 (18)
C1—C2—H2119.5N3—C8—S1119.75 (15)
C4—C3—C2119.8 (2)N3—C9—N2109.5 (2)
C4—C3—H3120.1N3—C9—N4125.7 (2)
C2—C3—H3120.1N2—C9—N4124.8 (2)
C5—C4—C3120.0 (2)C8—N1—N2101.91 (18)
C5—C4—H4120.0C9—N2—N1110.48 (19)
C3—C4—H4120.0C9—N2—H21129.8 (18)
C4—C5—C6120.1 (2)N1—N2—H21119.7 (17)
C4—C5—H5119.9C9—N3—C8103.18 (17)
C6—C5—H5119.9H42—N4—C9122 (2)
C5—C6—C1120.6 (2)H42—N4—H41120 (3)
C5—C6—H6119.7C9—N4—H41117 (2)
C1—C6—H6119.7H42—N4—H420(2)
C1—C7—S1113.99 (16)C9—N4—H42122 (2)
C1—C7—H7A108.8H41—N4—H42120 (3)
S1—C7—H7A108.8C8—S1—C7101.62 (11)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N4—H41···N1i0.89 (1)2.20 (2)3.044 (3)158 (3)
N2—H21···N3ii0.90 (1)2.03 (2)2.873 (2)155 (2)
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N4—H41···N1i0.89 (1)2.20 (2)3.044 (3)158 (3)
N2—H21···N3ii0.90 (1)2.03 (2)2.873 (2)155 (2)
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.
Acknowledgements top

The authors thank Heilongjiang University for supporting this work.

references
References top

El-Sagheer, A. H. & Brown, T. (2011). Chem. Commun. 47, 12057–12058.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands,Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.