[Journal logo]

Volume 68 
Part 1 
Page m73  
January 2012  

Received 5 December 2011
Accepted 13 December 2011
Online 21 December 2011

Key indicators
Single-crystal X-ray study
T = 273 K
Mean [sigma](C-C) = 0.005 Å
R = 0.025
wR = 0.065
Data-to-parameter ratio = 12.0
Details
Open access

Tripotassium (bis{[bis(carboxylatomethyl)amino]methyl}phosphinato)cuprate(II) dihydrate

aCollege of Chemistry and Biology, Shenyang Normal University, Shenyang, Liaoning 110000, People's Republic of China, and bCollege of Chemistry, Liaoning University, Shenyang, Liaoning 110036, People's Republic of China
Correspondence e-mail: xdzhang@lnu.edu.cn

In the title compound, K3[Cu(C10H12N2O10P)]·2H2O, the CuII ion, one potassium cation and a P atom are situated on a twofold rotation axis. The CuII ion is coordinated by two N and four O atoms from one bis{[bis(carboxylatomethyl)amino]methyl}phosphinate ligand in a distorted octahedral coordination geometry. The two crystallographically independent potassium ions exhibit different coordination environments. The potassium ion in a general position is heptacoordinated by five carboxylate O atoms, one phosphinate O atom and one water molecule [K-O = 2.718 (3)-3.040 (3) Å], and the potassium ion situated on the twofold rotation axis is hexacoordinated by four carboxylate O atoms and two water molecules [K-O = 2.618 (3)-2.771 (3) Å]. The water molecules are also involved in formation of intermolecular O-H...O hydrogen bonds.

Related literature

For details of the synthesis of the ligand, see: Varga (1997[Varga, T. R. (1997). Synth. Commun. 27, 2899-2903.]); Tircsó et al. (2007)[Tircsó, G., Bényei, A., Király, R., Lázár, I., Pál, R. & Brücher, E. (2007). Eur. J. Inorg. Chem. pp. 701-713.]. For the isotypic compound with Co(II), see: Xu et al. (2001[Xu, L., Rettig, S. J. & Orvig, C. (2001). Inorg. Chem. 40, 3734-3738.]).

[Scheme 1]

Experimental

Crystal data
  • K3[Cu(C10H12N2O10P)]·2H2O

  • Mr = 568.06

  • Orthorhombic, P 21 21 2

  • a = 11.880 (7) Å

  • b = 8.332 (5) Å

  • c = 9.681 (6) Å

  • V = 958.2 (10) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 1.94 mm-1

  • T = 273 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.643, Tmax = 0.760

  • 3814 measured reflections

  • 1686 independent reflections

  • 1553 reflections with I > 2[sigma](I)

  • Rint = 0.041

Refinement
  • R[F2 > 2[sigma](F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.07

  • 1686 reflections

  • 141 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.42 e Å-3

  • [Delta][rho]min = -0.27 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 671 Friedel pairs

  • Flack parameter: -0.016 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O6-H6A...O5i 0.93 (2) 1.75 (4) 2.682 (4) 173 (4)
O6-H6B...O1ii 0.94 (2) 2.02 (5) 2.860 (4) 148 (4)
Symmetry codes: (i) x, y+1, z-1; (ii) -x+1, -y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5214 ).


Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 20971062 and 21171081).

References

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.  [CrossRef] [ChemPort] [details]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Tircsó, G., Bényei, A., Király, R., Lázár, I., Pál, R. & Brücher, E. (2007). Eur. J. Inorg. Chem. pp. 701-713.
Varga, T. R. (1997). Synth. Commun. 27, 2899-2903.  [CrossRef] [ChemPort]
Xu, L., Rettig, S. J. & Orvig, C. (2001). Inorg. Chem. 40, 3734-3738.  [CSD] [CrossRef] [PubMed] [ChemPort]


Acta Cryst (2012). E68, m73  [ doi:10.1107/S1600536811053608 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.