supplementary materials


ds2157 scheme

Acta Cryst. (2012). E68, o49    [ doi:10.1107/S1600536811051944 ]

3-Chloro-N-(2-chlorophenyl)benzamide

V. Z. Rodrigues, P. Herich, B. T. Gowda and J. Kozísek

Abstract top

In the title compound, C13H9Cl2NO, the meta-Cl atom in the benzoyl ring is positioned anti to the C=O bond, while the ortho-Cl atom in the aniline ring is positioned syn to the N-H bond. The two aromatic rings are almost coplanar, making a dihedral angle of 4.73 (5)°. The crystal structure is stabilized by N-H...O hydrogen bonds, which link the molecules into chains along the b axis.

Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000, 2008; Bowes et al., 2003; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylamides (Gowda et al., 1996), in the present work, the crystal structure of 3-Chloro-N-(2-chlorophenyl)benzamide (I) has been determined (Fig.1).

In (I), the meta-Cl atom in the benzoyl ring is positioned anti to the C=O bond, while the ortho-Cl group in the anilino ring is positioned syn to the N—H bond, the N—H and C=O bonds in the C—NH—C(O)—C segment being anti to each other.

Further, the two aromatic rings are nearly coplanar with the dihedral angle of 4.73 (5)°, compared to the values of 9.1 (2)° and 7.3 (3)° in the two independent molecules of 3-chloro-N-(3-chlorophenyl)benzamide (Gowda et al., 2008).

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the a-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2008). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000, 2008); Bowes et al. (2003); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloroarylamides, see: Gowda et al. (1996).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Rod like colorless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines.
3-Chloro-N-(2-chlorophenyl)benzamide top
Crystal data top
C13H9Cl2NOF(000) = 544
Mr = 266.11Dx = 1.520 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11869 reflections
a = 11.1371 (4) Åθ = 3.4–29.6°
b = 4.85230 (17) ŵ = 0.54 mm1
c = 21.5198 (8) ÅT = 293 K
β = 90.142 (3)°Rod, colorless
V = 1162.94 (7) Å30.66 × 0.30 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3262 independent reflections
Radiation source: Enhance (Mo) X-ray Source2279 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 10.4340 pixels mm-1θmax = 29.6°, θmin = 3.4°
ω scansh = 1515
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 66
Tmin = 0.824, Tmax = 0.958l = 2929
22845 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.1106P]
where P = (Fo2 + 2Fc2)/3
3262 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H9Cl2NOV = 1162.94 (7) Å3
Mr = 266.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1371 (4) ŵ = 0.54 mm1
b = 4.85230 (17) ÅT = 293 K
c = 21.5198 (8) Å0.66 × 0.30 × 0.08 mm
β = 90.142 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3262 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
2279 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.958Rint = 0.034
22845 measured reflectionsθmax = 29.6°
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.31 e Å3
S = 1.07Δρmin = 0.26 e Å3
3262 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28710 (14)0.3142 (3)0.01071 (8)0.0380 (4)
C20.34075 (14)0.4188 (3)0.04824 (7)0.0375 (3)
C30.28456 (14)0.6171 (3)0.08504 (7)0.0376 (3)
H3A0.21150.69300.07310.045*
C40.33904 (15)0.6991 (3)0.13953 (7)0.0389 (4)
C50.44901 (16)0.5933 (4)0.15784 (8)0.0454 (4)
H5A0.48540.65370.19420.055*
C60.50336 (16)0.3967 (4)0.12103 (9)0.0476 (4)
H6A0.57720.32400.13270.057*
C70.44943 (15)0.3067 (3)0.06703 (8)0.0421 (4)
H7A0.48600.17050.04320.050*
C80.16652 (14)0.4468 (3)0.10141 (7)0.0363 (3)
C90.05966 (15)0.5829 (3)0.11471 (7)0.0380 (4)
C100.00095 (17)0.5387 (4)0.16973 (9)0.0498 (4)
H10A0.07190.63280.17780.060*
C110.04410 (19)0.3552 (4)0.21236 (9)0.0553 (5)
H11A0.00320.32350.24930.066*
C120.15079 (18)0.2166 (4)0.20030 (9)0.0518 (5)
H12A0.18160.09250.22920.062*
C130.21073 (16)0.2639 (4)0.14537 (8)0.0450 (4)
H13A0.28230.17130.13760.054*
N10.22659 (12)0.5014 (3)0.04507 (6)0.0378 (3)
H1A0.22450.66790.03140.045*
O10.29906 (12)0.0726 (2)0.02617 (6)0.0521 (3)
Cl10.00096 (4)0.81078 (10)0.06110 (2)0.05256 (16)
Cl20.26902 (4)0.94011 (10)0.18730 (2)0.05402 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (8)0.0296 (8)0.0432 (9)0.0022 (6)0.0019 (7)0.0005 (6)
C20.0435 (8)0.0289 (7)0.0400 (8)0.0024 (6)0.0023 (7)0.0034 (6)
C30.0408 (8)0.0315 (7)0.0406 (8)0.0012 (6)0.0042 (7)0.0026 (6)
C40.0462 (9)0.0320 (8)0.0384 (8)0.0015 (7)0.0005 (7)0.0016 (6)
C50.0499 (9)0.0456 (9)0.0409 (9)0.0042 (8)0.0093 (7)0.0007 (7)
C60.0416 (9)0.0484 (10)0.0529 (10)0.0025 (8)0.0084 (8)0.0044 (8)
C70.0432 (9)0.0381 (9)0.0448 (9)0.0036 (7)0.0002 (7)0.0020 (7)
C80.0407 (8)0.0285 (7)0.0397 (8)0.0044 (6)0.0024 (6)0.0018 (6)
C90.0422 (8)0.0317 (8)0.0402 (8)0.0002 (7)0.0001 (7)0.0034 (6)
C100.0500 (10)0.0503 (10)0.0492 (10)0.0021 (8)0.0120 (8)0.0012 (8)
C110.0672 (12)0.0553 (11)0.0435 (10)0.0023 (10)0.0150 (9)0.0090 (8)
C120.0654 (12)0.0467 (10)0.0433 (10)0.0013 (9)0.0004 (8)0.0110 (8)
C130.0477 (9)0.0392 (8)0.0481 (10)0.0041 (7)0.0003 (7)0.0070 (7)
N10.0467 (7)0.0268 (6)0.0398 (7)0.0008 (5)0.0065 (6)0.0043 (5)
O10.0702 (8)0.0258 (6)0.0603 (8)0.0037 (5)0.0152 (6)0.0042 (5)
Cl10.0524 (3)0.0506 (3)0.0547 (3)0.0111 (2)0.0019 (2)0.01349 (19)
Cl20.0654 (3)0.0488 (3)0.0479 (3)0.0055 (2)0.0006 (2)0.01029 (19)
Geometric parameters (Å, °) top
C1—O11.2257 (19)C8—C131.387 (2)
C1—N11.352 (2)C8—C91.391 (2)
C1—C21.493 (2)C8—N11.411 (2)
C2—C71.388 (2)C9—C101.381 (2)
C2—C31.393 (2)C9—Cl11.7337 (16)
C3—C41.380 (2)C10—C111.373 (3)
C3—H3A0.9300C10—H10A0.9300
C4—C51.386 (2)C11—C121.390 (3)
C4—Cl21.7404 (16)C11—H11A0.9300
C5—C61.379 (3)C12—C131.378 (3)
C5—H5A0.9300C12—H12A0.9300
C6—C71.380 (3)C13—H13A0.9300
C6—H6A0.9300N1—H1A0.8600
C7—H7A0.9300
O1—C1—N1123.23 (15)C13—C8—C9117.77 (15)
O1—C1—C2120.84 (15)C13—C8—N1122.54 (15)
N1—C1—C2115.93 (13)C9—C8—N1119.69 (14)
C7—C2—C3119.73 (15)C10—C9—C8121.52 (15)
C7—C2—C1117.73 (14)C10—C9—Cl1118.63 (13)
C3—C2—C1122.53 (14)C8—C9—Cl1119.84 (12)
C4—C3—C2118.95 (15)C11—C10—C9119.68 (17)
C4—C3—H3A120.5C11—C10—H10A120.2
C2—C3—H3A120.5C9—C10—H10A120.2
C3—C4—C5121.70 (15)C10—C11—C12120.00 (17)
C3—C4—Cl2119.88 (13)C10—C11—H11A120.0
C5—C4—Cl2118.41 (13)C12—C11—H11A120.0
C6—C5—C4118.66 (16)C13—C12—C11119.71 (17)
C6—C5—H5A120.7C13—C12—H12A120.1
C4—C5—H5A120.7C11—C12—H12A120.1
C5—C6—C7120.75 (16)C12—C13—C8121.31 (17)
C5—C6—H6A119.6C12—C13—H13A119.3
C7—C6—H6A119.6C8—C13—H13A119.3
C6—C7—C2120.17 (16)C1—N1—C8125.58 (13)
C6—C7—H7A119.9C1—N1—H1A117.2
C2—C7—H7A119.9C8—N1—H1A117.2
O1—C1—C2—C734.2 (2)N1—C8—C9—C10178.97 (16)
N1—C1—C2—C7145.40 (15)C13—C8—C9—Cl1179.20 (13)
O1—C1—C2—C3144.21 (17)N1—C8—C9—Cl11.8 (2)
N1—C1—C2—C336.2 (2)C8—C9—C10—C110.5 (3)
C7—C2—C3—C40.4 (2)Cl1—C9—C10—C11178.75 (15)
C1—C2—C3—C4178.75 (14)C9—C10—C11—C120.6 (3)
C2—C3—C4—C51.3 (2)C10—C11—C12—C130.2 (3)
C2—C3—C4—Cl2178.43 (11)C11—C12—C13—C80.3 (3)
C3—C4—C5—C61.5 (3)C9—C8—C13—C120.4 (3)
Cl2—C4—C5—C6178.26 (14)N1—C8—C13—C12179.35 (16)
C4—C5—C6—C70.0 (3)O1—C1—N1—C82.0 (3)
C5—C6—C7—C21.7 (3)C2—C1—N1—C8178.39 (14)
C3—C2—C7—C61.8 (2)C13—C8—N1—C137.2 (2)
C1—C2—C7—C6179.71 (15)C9—C8—N1—C1143.89 (16)
C13—C8—C9—C100.0 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.142.9157 (17)151.
Symmetry codes: (i) x, y+1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.142.9157 (17)151.
Symmetry codes: (i) x, y+1, z.
Acknowledgements top

LK and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202–10) for support, and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

references
References top

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.

Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.

Gowda, B. T., Dou, S. & Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627–636.

Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o949.

Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.

Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.