supplementary materials


ez2268 scheme

Acta Cryst. (2012). E68, o124-o125    [ doi:10.1107/S160053681105286X ]

2-Aminopyridinium 2-methoxycarbonyl-4,6-dinitrophenolate

D.-L. Wu and Z.-J. Xiao

Abstract top

In the title molecular salt, C5H7N2+·C8H5N2O7-, the 2-aminopyridinium cation is essentially planar, with a maximium deviation of 0.015 (1) Å, while the 2-methoxycarbonyl-4,6-dinitrophenolate anion is slightly twisted away from planarity, with a maximium deviation of 0.187 (1) Å. Deprotonation of the hydroxy O atom was observed. The cation and anion are connected by four bifurcated N-H...(O,O) hydrogen bonds, forming a molecular proton-transfer adduct. The dihedral angle between the pyridinium ring in the cation and the benzene ring in the anion is 3.65 (6)°. Every adduct connects to six neighboring adducts by N-H...O and C-H...O hydrogen bonds, yielding extended layers parallel to the bc plane. There is a weak [pi]-[pi] interaction between the benzene rings of two neighboring anions; the interplanar spacing and the centroid-centroid separation are 3.309 (1) and 3.69 (1) Å, respectively.

Comment top

The structures of many molecular proton transfer adducts containing substituted pyridinium and an acid anion have been reported in the past decades (Gellert & Hsu, 1988; Smith et al., 2000; Jebas et al., 2006; Rademeyer, 2007; Hemamalini & Fun, 2010a,b, c). As a substituted pyridinium, 2-aminopyridine has attracted great attention due to its various hydrogen bonds (Gellert & Hsu, 1988; Jebas et al., 2006; Perpétuo & Janczak, 2010; Hemamalini & Fun, 2010a). We report here the synthesis and crystal structure of 2-aminopyridinium 3,5-dinitromethyl salicylate (I).

In the title compound, proton transfer has occurred from the hydroxyl group. As illustrated in Figure 1, the title molecule consists of a protonated 2-aminopyridinium cation and a 3,5-dinitromethyl salicylate anion. The cation and the anion are linked via two N—H···O(hydroxy), one N—H···O(carboxy) and one N—H···O(nitro group) hydrogen bonds to form an ion pair. The dihedral angle between the pyridinium ring in the cation and the benzene ring in the anion is 3.65 (6)°.

The bond lengths and angles in (I) are similar to those in other 2-aminopyridinium complexes (Jebas et al., 2006; Perpétuo & Janczak, 2010; Hemamalini & Fun, 2010a).

As shown in Figure 2, the adduct at (x, y, z) connects to two neighboring adducts [at (0.5-x, 0.5+y, 0.5-z) and at (0.5-x, -0.5+y, 0.5-z)] through two N2-H···O6A (symmetry code A, 0.5-x, 0.5+y, 0.5-z) hydrogen bonds, forming a spiral chain. At the same time, the adduct at (x, y, z) interacts with two neighboring adducts via two C4-H···O7B (symmetry code B, 0.5-x, 0.5+y, 1.5-z) hydrogen bonds, also resulting in a spiral chain. A further C5-H···O5D (symmetry code D, x, y, 1+z) hydrogen bond connects the adduct to another two adducts. Therefore, every adduct connects to six neighboring adducts by these N-H···O and Caryl-H···O hydrogen bonds to yield an extended undulating two-dimensional network (Figure 2).

The benzene ring of the anion at (x, y, z) and the benzene ring in the anion at (1-x, 1-y, 1-z) are almost parallel, with a dihedral angle of 0.00 (6)° between them. The interplanar spacing is about 3.309 (1) Å, the centroid-centroid separation is 3.69 (1) Å, indicating a weak π-π interaction between these rings (Figure 3).

Related literature top

For the structures of molecular proton-transfer adducts containing substituted pyridinium and an acid anion, see Gellert & Hsu (1988); Smith et al. (2000); Jebas et al. (2006); Rademeyer (2007); Hemamalini & Fun (2010a,b,c); Perpétuo & Janczak (2010). For comparable structures, see: Jebas et al. (2006); Perpétuo & Janczak (2010); Hemamalini & Fun (2010a). For the synthesis of 3,5-dinitromethyl salicylate, see: Bartlett & Trachten (1958).

Experimental top

Reagents and solvents were used as obtained without further purification. 3,5-dinitromethyl salicylate was synthesized according to literature methods (Bartlett & Trachten, 1958). Ni(OAc)2.4H2O (0.0498g, 0.2 mmol) was dissolved in 10 mL of methanol to yield solution A. 3,5-dinitromethyl salicylate (0.0484 g, 0.2 mmol) and 2-aminopyridine (0.0188 g , 0.2 mmol) were dissolved in 10 mL of acetone to yield solution B. Solution A was slowly added to solution B. The mixture was stirred for 4 h at room temperature. After filtration, the green filtrate was allowed to stand at room temperature for several days. The yellow block crystals of the title compound (I) were obtained by slow evaporation.

Refinement top

The pyridinium H atom and H atoms in the NH2 group were located in a Fourier map and their positions refined. This resulted in the best placement of these atoms in the hydrogen-bonding network. All other H atoms were placed in calculated positions and refined using a riding model [C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C-H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms].

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2008); cell refinement: RAPID-AUTO (Rigaku, 2008); data reduction: RAPID-AUTO (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines
[Figure 2] Fig. 2. The extended 2D network of compound (I) formed by N-H···O and C-H···O hydrogen bonds
2-Aminopyridinium 2-methoxycarbonyl-4,6-dinitrophenolate top
Crystal data top
C5H7N2+·C8H5N2O7F(000) = 696
Mr = 336.27Dx = 1.592 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3200 reflections
a = 7.4088 (3) Åθ = 3.2–27.5°
b = 19.1779 (6) ŵ = 0.13 mm1
c = 9.9784 (4) ÅT = 293 K
β = 98.2825 (15)°Block, pale yellow
V = 1403.00 (9) Å30.35 × 0.35 × 0.26 mm
Z = 4
Data collection top
Rigaku R-AXIS SPIDER IP
diffractometer
3200 independent reflections
Radiation source: fine-focus sealed tube2760 reflections with I > 2σ(I)
graphiteRint = 0.024
φ and ω scanθmax = 27.5°, θmin = 3.2°
Absorption correction: ψ scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 99
Tmin = 0.951, Tmax = 0.969k = 2424
21789 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.3452P]
where P = (Fo2 + 2Fc2)/3
3200 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C5H7N2+·C8H5N2O7V = 1403.00 (9) Å3
Mr = 336.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4088 (3) ŵ = 0.13 mm1
b = 19.1779 (6) ÅT = 293 K
c = 9.9784 (4) Å0.35 × 0.35 × 0.26 mm
β = 98.2825 (15)°
Data collection top
Rigaku R-AXIS SPIDER IP
diffractometer
2760 reflections with I > 2σ(I)
Absorption correction: ψ scan
(TEXRAY; Molecular Structure Corporation, 1999)
Rint = 0.024
Tmin = 0.951, Tmax = 0.969θmax = 27.5°
21789 measured reflectionsStandard reflections: 0
3200 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.111Δρmax = 0.32 e Å3
S = 1.09Δρmin = 0.30 e Å3
3200 reflectionsAbsolute structure: ?
221 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02842 (16)0.69774 (6)0.60013 (13)0.0241 (3)
C20.11062 (17)0.75222 (6)0.66522 (14)0.0289 (3)
H2A0.16390.78970.61510.035*
C30.11154 (18)0.74967 (7)0.80192 (14)0.0311 (3)
H3A0.16570.78560.84450.037*
C40.03148 (18)0.69327 (7)0.87924 (13)0.0307 (3)
H4A0.02990.69190.97260.037*
C50.04326 (17)0.64096 (7)0.81366 (12)0.0267 (3)
H5A0.09520.60290.86250.032*
C60.29417 (15)0.45835 (6)0.52321 (11)0.0210 (2)
C70.22285 (16)0.51541 (6)0.43454 (12)0.0222 (2)
C80.25155 (16)0.50645 (6)0.29470 (12)0.0228 (2)
C90.34193 (16)0.45058 (6)0.24919 (11)0.0232 (2)
H9A0.35710.44730.15850.028*
C100.41023 (15)0.39918 (6)0.34032 (12)0.0215 (2)
C110.38567 (16)0.40290 (6)0.47609 (12)0.0214 (2)
H11A0.43140.36760.53550.026*
C120.27237 (16)0.46104 (6)0.66889 (12)0.0237 (2)
C130.3255 (2)0.40100 (9)0.87787 (14)0.0451 (4)
H13A0.33990.35380.90980.068*
H13B0.20930.41850.89420.068*
H13C0.42090.42940.92500.068*
N10.04300 (14)0.64367 (5)0.67753 (10)0.0233 (2)
H01A0.08710.60720.63660.044 (5)*
N20.01983 (16)0.69663 (6)0.46755 (11)0.0301 (3)
H02A0.02120.65920.42980.043 (5)*
H02B0.05600.73300.41890.043 (5)*
N30.18614 (16)0.55870 (6)0.19326 (11)0.0312 (3)
N40.50832 (14)0.34132 (5)0.29295 (10)0.0241 (2)
O10.33525 (16)0.40289 (5)0.73434 (9)0.0380 (3)
O20.20907 (15)0.50859 (5)0.72572 (9)0.0361 (2)
O30.14378 (14)0.56716 (5)0.47530 (9)0.0347 (2)
O40.12739 (17)0.61428 (5)0.22518 (11)0.0425 (3)
O50.1928 (3)0.54493 (9)0.07588 (12)0.1015 (8)
O60.52421 (14)0.33865 (5)0.17125 (9)0.0329 (2)
O70.57286 (14)0.29666 (5)0.37464 (10)0.0342 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0235 (5)0.0210 (5)0.0277 (6)0.0042 (4)0.0030 (5)0.0003 (4)
C20.0288 (6)0.0210 (6)0.0366 (7)0.0003 (5)0.0031 (5)0.0011 (5)
C30.0305 (6)0.0267 (6)0.0367 (7)0.0006 (5)0.0073 (5)0.0103 (5)
C40.0331 (7)0.0338 (7)0.0255 (6)0.0029 (5)0.0057 (5)0.0063 (5)
C50.0288 (6)0.0273 (6)0.0237 (6)0.0016 (5)0.0028 (5)0.0001 (5)
C60.0221 (5)0.0229 (6)0.0181 (5)0.0014 (4)0.0027 (4)0.0004 (4)
C70.0239 (5)0.0221 (5)0.0206 (5)0.0005 (4)0.0029 (4)0.0010 (4)
C80.0257 (6)0.0229 (6)0.0194 (5)0.0001 (4)0.0014 (4)0.0028 (4)
C90.0258 (6)0.0264 (6)0.0175 (5)0.0016 (4)0.0034 (4)0.0008 (4)
C100.0226 (5)0.0203 (5)0.0219 (6)0.0007 (4)0.0046 (4)0.0027 (4)
C110.0225 (5)0.0210 (5)0.0206 (5)0.0017 (4)0.0028 (4)0.0012 (4)
C120.0248 (6)0.0258 (6)0.0206 (5)0.0007 (4)0.0034 (4)0.0004 (4)
C130.0604 (10)0.0566 (10)0.0200 (7)0.0201 (8)0.0117 (6)0.0107 (6)
N10.0261 (5)0.0209 (5)0.0233 (5)0.0003 (4)0.0053 (4)0.0014 (4)
N20.0410 (6)0.0236 (5)0.0261 (5)0.0033 (4)0.0062 (5)0.0037 (4)
N30.0399 (6)0.0313 (6)0.0224 (5)0.0076 (5)0.0046 (5)0.0052 (4)
N40.0256 (5)0.0230 (5)0.0244 (5)0.0013 (4)0.0061 (4)0.0022 (4)
O10.0586 (7)0.0379 (5)0.0194 (4)0.0191 (5)0.0117 (4)0.0066 (4)
O20.0546 (6)0.0321 (5)0.0237 (4)0.0117 (4)0.0125 (4)0.0005 (4)
O30.0507 (6)0.0296 (5)0.0246 (5)0.0156 (4)0.0084 (4)0.0011 (4)
O40.0678 (7)0.0245 (5)0.0355 (5)0.0100 (5)0.0088 (5)0.0069 (4)
O50.1943 (19)0.0906 (11)0.0208 (6)0.0938 (13)0.0190 (8)0.0151 (6)
O60.0432 (5)0.0334 (5)0.0237 (4)0.0050 (4)0.0097 (4)0.0060 (4)
O70.0433 (5)0.0269 (5)0.0340 (5)0.0102 (4)0.0117 (4)0.0055 (4)
Geometric parameters (Å, °) top
C1—N21.3338 (16)C9—C101.3864 (16)
C1—N11.3543 (16)C9—H9A0.9300
C1—C21.4136 (17)C10—C111.3945 (15)
C2—C31.3659 (19)C10—N41.4429 (15)
C2—H2A0.9300C11—H11A0.9300
C3—C41.409 (2)C12—O21.2041 (15)
C3—H3A0.9300C12—O11.3414 (15)
C4—C51.3586 (18)C13—O11.4448 (15)
C4—H4A0.9300C13—H13A0.9600
C5—N11.3591 (15)C13—H13B0.9600
C5—H5A0.9300C13—H13C0.9600
C6—C111.3796 (16)N1—H01A0.8952
C6—C71.4578 (16)N2—H02A0.8838
C6—C121.4864 (15)N2—H02B0.8702
C7—O31.2498 (14)N3—O51.2087 (16)
C7—C81.4516 (16)N3—O41.2112 (15)
C8—C91.3748 (17)N4—O71.2307 (14)
C8—N31.4568 (15)N4—O61.2378 (13)
N2—C1—N1118.87 (11)C9—C10—N4119.04 (10)
N2—C1—C2123.56 (11)C11—C10—N4119.99 (10)
N1—C1—C2117.56 (11)C6—C11—C10120.65 (10)
C3—C2—C1119.79 (12)C6—C11—H11A119.7
C3—C2—H2A120.1C10—C11—H11A119.7
C1—C2—H2A120.1O2—C12—O1122.13 (11)
C2—C3—C4120.81 (12)O2—C12—C6126.26 (11)
C2—C3—H3A119.6O1—C12—C6111.61 (10)
C4—C3—H3A119.6O1—C13—H13A109.5
C5—C4—C3118.15 (12)O1—C13—H13B109.5
C5—C4—H4A120.9H13A—C13—H13B109.5
C3—C4—H4A120.9O1—C13—H13C109.5
C4—C5—N1120.74 (12)H13A—C13—H13C109.5
C4—C5—H5A119.6H13B—C13—H13C109.5
N1—C5—H5A119.6C1—N1—C5122.92 (10)
C11—C6—C7121.65 (10)C1—N1—H01A118.4
C11—C6—C12119.21 (10)C5—N1—H01A118.6
C7—C6—C12119.11 (10)C1—N2—H02A120.2
O3—C7—C8123.18 (11)C1—N2—H02B119.0
O3—C7—C6122.99 (10)H02A—N2—H02B120.7
C8—C7—C6113.83 (10)O5—N3—O4120.90 (12)
C9—C8—C7123.75 (10)O5—N3—C8117.84 (11)
C9—C8—N3115.83 (10)O4—N3—C8121.25 (11)
C7—C8—N3120.41 (10)O7—N4—O6122.57 (10)
C8—C9—C10119.11 (10)O7—N4—C10118.96 (10)
C8—C9—H9A120.4O6—N4—C10118.47 (10)
C10—C9—H9A120.4C12—O1—C13116.11 (10)
C9—C10—C11120.97 (10)
N2—C1—C2—C3179.20 (12)C9—C10—C11—C60.67 (17)
N1—C1—C2—C31.62 (18)N4—C10—C11—C6179.18 (10)
C1—C2—C3—C40.03 (19)C11—C6—C12—O2173.68 (12)
C2—C3—C4—C51.28 (19)C7—C6—C12—O24.57 (18)
C3—C4—C5—N10.98 (19)C11—C6—C12—O15.50 (16)
C11—C6—C7—O3178.03 (11)C7—C6—C12—O1176.25 (10)
C12—C6—C7—O30.17 (18)N2—C1—N1—C5178.80 (11)
C11—C6—C7—C82.18 (16)C2—C1—N1—C51.97 (17)
C12—C6—C7—C8179.61 (10)C4—C5—N1—C10.68 (18)
O3—C7—C8—C9178.46 (12)C9—C8—N3—O510.0 (2)
C6—C7—C8—C91.76 (17)C7—C8—N3—O5170.96 (17)
O3—C7—C8—N30.49 (18)C9—C8—N3—O4169.76 (12)
C6—C7—C8—N3179.30 (10)C7—C8—N3—O49.27 (19)
C7—C8—C9—C100.18 (18)C9—C10—N4—O7178.17 (11)
N3—C8—C9—C10179.17 (10)C11—C10—N4—O71.68 (16)
C8—C9—C10—C111.12 (17)C9—C10—N4—O61.80 (16)
C8—C9—C10—N4178.74 (10)C11—C10—N4—O6178.35 (10)
C7—C6—C11—C101.09 (17)O2—C12—O1—C131.0 (2)
C12—C6—C11—C10179.29 (10)C6—C12—O1—C13178.21 (12)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H01A···O30.901.882.6864 (13)148.
N1—H01A···O20.902.232.8783 (14)130.
N2—H02A···O30.882.012.7592 (14)142.
N2—H02A···O40.882.453.2082 (15)144.
N2—H02B···O6i0.872.243.0537 (14)155.
C4—H4A···O7ii0.932.573.2052 (16)126.
C5—H5A···O5iii0.932.423.2604 (17)151.
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) x, y, z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H01A···O30.901.882.6864 (13)148.
N1—H01A···O20.902.232.8783 (14)130.
N2—H02A···O30.882.012.7592 (14)142.
N2—H02A···O40.882.453.2082 (15)144.
N2—H02B···O6i0.872.243.0537 (14)155.
C4—H4A···O7ii0.932.573.2052 (16)126.
C5—H5A···O5iii0.932.423.2604 (17)151.
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) x, y, z+1.
Acknowledgements top

This project was supported financially by the Natural Science Foundation of China (No. 50971063) and the Natural Science Foundation of Fujian Province (Nos. E0640006, 2003F006, 2010J01042).

references
References top

Bartlett, P. D. & Trachten, E. N. (1958). J. Am. Chem. Soc. 80, 5808–5812.

Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313.

Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o691–o692.

Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1418–o1419.

Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o2323–o2324.

Jebas, S. R., Balasubramanian, T., Peschar, R. & Fraanje, J. (2006). Acta Cryst. E62, o2606–o2607.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.

Molecular Structure Corporation (1999). TEXRAY. MSC, The Woodlands, Texas, USA.

Perpétuo, G. J. & Janczak, J. (2010). Acta Cryst. C66, o225–o228.

Rademeyer, M. (2007). Acta Cryst. E63, o545–o546.

Rigaku (2008). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Smith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505–1506.