supplementary materials


ff2048 scheme

Acta Cryst. (2012). E68, o205    [ doi:10.1107/S1600536811054158 ]

3-(4-Bromophenylsulfinyl)-5-cyclohexyl-2-methyl-1-benzofuran

H. D. Choi, P. J. Seo and U. Lee

Abstract top

In the title compound, C21H21BrO2S, the cyclohexyl ring adopts a chair conformation. The 4-bromophenyl ring makes a dihedral angle of 81.62 (6)° with the mean plane of the benzofuran fragment. In the crystal, molecules are linked by weak C-H...O and C-H...[pi] interactions. The crystal structure also exhibits a slipped [pi]-[pi] interaction between the furan rings of neighbouring molecules [centroid-centroid distances = 3.540 (3) Å, interplanar distance = 3.481 (3) Å and slippage = 0.644 (3) Å].

Comment top

Substituted benzofuran derivatives have drawn much interest due to their valuable biological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of 5-cyclohexyl-1-benzofuran derivatives containing either 3-(4-fluorophenylsulfinyl) (Choi et al., 2011a) or 3-phenylsulfinyl (Choi et al., 2011b) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (2) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring has the chair form. The dihedral angle formed by the 4-bromophenyl ring and the mean plane of the benzofuran fragment is 81.62 (6)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1; first entry) and intermolecular C—H···π interactions (Table 1; second entry, Cg2 is the centroid of the C2–C7 benzene ring). The crystal packing (Fig. 2) is further stabilized by a weak slipped π···π interaction between the furan rings of adjacent molecules, with a Cg1···Cg1ii distance of 3.540 (3) Å and an interplanar distance of 3.481 (3) Å resulting in a slippage of 0.644 (3) Å (Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring).

Related literature top

For the biological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2011a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 3-(4-bromophenylsulfanyl)-5-cyclohexyl-2-methyl-1-benzofuran (321 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 6h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 461–462 K; Rf = 0.47 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O, C—H···π and π···π interactions (dotted lines). H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x, - y + 3/2, z - 1/2; (ii) - x, - y + 1, - z + 1; (iii) x, - y + 3/2, z + 1/2 .]
3-(4-Bromophenylsulfinyl)-5-cyclohexyl-2-methyl-1-benzofuran top
Crystal data top
C21H21BrO2SF(000) = 856
Mr = 417.35Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6823 reflections
a = 16.7340 (4) Åθ = 2.5–25.9°
b = 8.8290 (2) ŵ = 2.34 mm1
c = 13.0178 (3) ÅT = 173 K
β = 105.197 (1)°Block, colourless
V = 1856.05 (7) Å30.25 × 0.23 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4653 independent reflections
Radiation source: rotating anode3467 reflections with I > 2σ(I)
graphite multilayerRint = 0.039
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 1.3°
φ and ω scansh = 2122
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 911
Tmin = 0.561, Tmax = 0.746l = 1715
17836 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.7692P]
where P = (Fo2 + 2Fc2)/3
4653 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C21H21BrO2SV = 1856.05 (7) Å3
Mr = 417.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.7340 (4) ŵ = 2.34 mm1
b = 8.8290 (2) ÅT = 173 K
c = 13.0178 (3) Å0.25 × 0.23 × 0.11 mm
β = 105.197 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4653 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3467 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 0.746Rint = 0.039
17836 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.52 e Å3
S = 1.04Δρmin = 0.61 e Å3
4653 reflectionsAbsolute structure: ?
227 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.468766 (17)0.59993 (4)0.30483 (2)0.06137 (12)
S10.13569 (3)0.72783 (5)0.44840 (4)0.03017 (13)
O10.03213 (8)0.32472 (16)0.40283 (11)0.0312 (3)
O20.15901 (10)0.78663 (16)0.55882 (12)0.0384 (4)
C10.10321 (12)0.5392 (2)0.45372 (15)0.0259 (4)
C20.13294 (12)0.4289 (2)0.53755 (16)0.0246 (4)
C30.19099 (12)0.4260 (2)0.63618 (16)0.0253 (4)
H30.22280.51350.66250.030*
C40.20162 (12)0.2931 (2)0.69560 (16)0.0267 (4)
C50.15359 (13)0.1661 (2)0.65496 (18)0.0328 (5)
H50.16130.07590.69620.039*
C60.09542 (13)0.1663 (2)0.55754 (18)0.0335 (5)
H60.06350.07900.53090.040*
C70.08631 (12)0.2995 (2)0.50145 (16)0.0279 (4)
C80.04359 (12)0.4725 (2)0.37654 (16)0.0285 (4)
C90.26423 (12)0.2852 (2)0.80359 (16)0.0287 (4)
H90.26300.17950.83080.034*
C100.35211 (13)0.3162 (3)0.79681 (18)0.0404 (5)
H10A0.35470.41820.76630.048*
H10B0.36750.24120.74870.048*
C110.41427 (14)0.3071 (3)0.90723 (19)0.0435 (6)
H11A0.41640.20180.93400.052*
H11B0.47020.33410.90080.052*
C120.39071 (16)0.4119 (3)0.9856 (2)0.0460 (6)
H12A0.39500.51810.96330.055*
H12B0.42980.39821.05660.055*
C130.30362 (16)0.3820 (3)0.99321 (19)0.0480 (6)
H13A0.28870.45731.04140.058*
H13B0.30090.28011.02380.058*
C140.24169 (15)0.3912 (3)0.88407 (19)0.0409 (5)
H14A0.18590.36480.89110.049*
H14B0.23970.49660.85750.049*
C150.00823 (13)0.5249 (3)0.27284 (17)0.0374 (5)
H15A0.00390.63520.26810.056*
H15B0.06600.49670.26600.056*
H15C0.01080.47740.21540.056*
C160.22978 (13)0.6877 (2)0.41199 (15)0.0275 (4)
C170.22676 (14)0.6868 (2)0.30470 (16)0.0320 (5)
H170.17590.70590.25320.038*
C180.29773 (15)0.6579 (2)0.27262 (17)0.0358 (5)
H180.29600.65480.19910.043*
C190.37075 (15)0.6337 (3)0.34865 (19)0.0374 (5)
C200.37513 (14)0.6356 (3)0.45633 (19)0.0388 (5)
H200.42630.61860.50760.047*
C210.30379 (13)0.6628 (2)0.48822 (17)0.0337 (5)
H210.30550.66440.56170.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04820 (18)0.0874 (2)0.0565 (2)0.00961 (14)0.02786 (14)0.00300 (14)
S10.0388 (3)0.0241 (2)0.0259 (3)0.0038 (2)0.0053 (2)0.0013 (2)
O10.0262 (7)0.0341 (8)0.0312 (8)0.0033 (6)0.0036 (6)0.0058 (6)
O20.0513 (9)0.0334 (8)0.0294 (8)0.0014 (7)0.0086 (7)0.0065 (6)
C10.0268 (10)0.0256 (10)0.0244 (10)0.0022 (8)0.0050 (8)0.0019 (8)
C20.0238 (9)0.0232 (9)0.0277 (10)0.0023 (7)0.0083 (8)0.0011 (8)
C30.0250 (10)0.0229 (9)0.0278 (10)0.0009 (7)0.0068 (8)0.0013 (8)
C40.0245 (9)0.0268 (10)0.0295 (11)0.0028 (8)0.0079 (8)0.0023 (8)
C50.0322 (11)0.0257 (10)0.0412 (13)0.0000 (8)0.0110 (9)0.0056 (9)
C60.0292 (11)0.0263 (10)0.0445 (13)0.0068 (8)0.0089 (9)0.0030 (9)
C70.0215 (9)0.0319 (11)0.0302 (11)0.0005 (8)0.0065 (8)0.0048 (8)
C80.0260 (10)0.0318 (10)0.0286 (11)0.0031 (8)0.0085 (8)0.0037 (8)
C90.0278 (10)0.0243 (10)0.0323 (11)0.0014 (8)0.0051 (8)0.0069 (8)
C100.0278 (11)0.0626 (15)0.0306 (12)0.0051 (10)0.0074 (9)0.0004 (11)
C110.0280 (11)0.0610 (16)0.0385 (13)0.0035 (11)0.0034 (10)0.0069 (11)
C120.0514 (15)0.0446 (14)0.0345 (13)0.0050 (11)0.0023 (11)0.0016 (10)
C130.0556 (16)0.0619 (16)0.0264 (12)0.0096 (12)0.0105 (11)0.0013 (11)
C140.0390 (13)0.0524 (14)0.0341 (13)0.0105 (10)0.0145 (10)0.0074 (10)
C150.0310 (11)0.0516 (14)0.0268 (11)0.0063 (10)0.0022 (9)0.0037 (10)
C160.0378 (11)0.0208 (9)0.0232 (10)0.0040 (8)0.0067 (9)0.0006 (7)
C170.0428 (12)0.0264 (10)0.0238 (10)0.0037 (9)0.0033 (9)0.0026 (8)
C180.0509 (14)0.0330 (11)0.0247 (11)0.0086 (10)0.0120 (10)0.0007 (9)
C190.0391 (12)0.0377 (12)0.0382 (13)0.0088 (10)0.0151 (10)0.0013 (10)
C200.0341 (12)0.0480 (13)0.0311 (12)0.0070 (10)0.0026 (9)0.0006 (10)
C210.0403 (12)0.0374 (11)0.0212 (10)0.0064 (9)0.0040 (9)0.0003 (9)
Geometric parameters (Å, °) top
Br1—C191.896 (2)C11—C121.505 (4)
S1—O21.4812 (15)C11—H11A0.9900
S1—C11.759 (2)C11—H11B0.9900
S1—C161.795 (2)C12—C131.510 (4)
O1—C81.375 (3)C12—H12A0.9900
O1—C71.382 (2)C12—H12B0.9900
C1—C81.351 (3)C13—C141.525 (3)
C1—C21.450 (3)C13—H13A0.9900
C2—C31.392 (3)C13—H13B0.9900
C2—C71.394 (3)C14—H14A0.9900
C3—C41.391 (3)C14—H14B0.9900
C3—H30.9500C15—H15A0.9800
C4—C51.400 (3)C15—H15B0.9800
C4—C91.519 (3)C15—H15C0.9800
C5—C61.382 (3)C16—C171.384 (3)
C5—H50.9500C16—C211.386 (3)
C6—C71.372 (3)C17—C181.382 (3)
C6—H60.9500C17—H170.9500
C8—C151.475 (3)C18—C191.373 (3)
C9—C101.521 (3)C18—H180.9500
C9—C141.524 (3)C19—C201.384 (3)
C9—H91.0000C20—C211.384 (3)
C10—C111.540 (3)C20—H200.9500
C10—H10A0.9900C21—H210.9500
C10—H10B0.9900
O2—S1—C1107.40 (9)C10—C11—H11B109.3
O2—S1—C16107.42 (9)H11A—C11—H11B108.0
C1—S1—C1697.18 (9)C11—C12—C13111.4 (2)
C8—O1—C7106.49 (15)C11—C12—H12A109.3
C8—C1—C2107.95 (17)C13—C12—H12A109.3
C8—C1—S1123.96 (16)C11—C12—H12B109.3
C2—C1—S1128.09 (15)C13—C12—H12B109.3
C3—C2—C7119.31 (18)H12A—C12—H12B108.0
C3—C2—C1136.49 (18)C12—C13—C14111.2 (2)
C7—C2—C1104.20 (17)C12—C13—H13A109.4
C4—C3—C2119.01 (18)C14—C13—H13A109.4
C4—C3—H3120.5C12—C13—H13B109.4
C2—C3—H3120.5C14—C13—H13B109.4
C3—C4—C5119.23 (18)H13A—C13—H13B108.0
C3—C4—C9120.69 (17)C9—C14—C13112.17 (19)
C5—C4—C9120.08 (17)C9—C14—H14A109.2
C6—C5—C4122.86 (19)C13—C14—H14A109.2
C6—C5—H5118.6C9—C14—H14B109.2
C4—C5—H5118.6C13—C14—H14B109.2
C7—C6—C5116.29 (19)H14A—C14—H14B107.9
C7—C6—H6121.9C8—C15—H15A109.5
C5—C6—H6121.9C8—C15—H15B109.5
C6—C7—O1125.95 (18)H15A—C15—H15B109.5
C6—C7—C2123.30 (19)C8—C15—H15C109.5
O1—C7—C2110.74 (17)H15A—C15—H15C109.5
C1—C8—O1110.62 (17)H15B—C15—H15C109.5
C1—C8—C15133.38 (19)C17—C16—C21120.7 (2)
O1—C8—C15115.99 (17)C17—C16—S1117.72 (16)
C4—C9—C10112.38 (17)C21—C16—S1121.55 (16)
C4—C9—C14111.90 (17)C18—C17—C16119.9 (2)
C10—C9—C14110.29 (18)C18—C17—H17120.0
C4—C9—H9107.3C16—C17—H17120.0
C10—C9—H9107.3C19—C18—C17118.9 (2)
C14—C9—H9107.3C19—C18—H18120.5
C9—C10—C11111.30 (18)C17—C18—H18120.5
C9—C10—H10A109.4C18—C19—C20121.9 (2)
C11—C10—H10A109.4C18—C19—Br1118.97 (18)
C9—C10—H10B109.4C20—C19—Br1119.09 (18)
C11—C10—H10B109.4C21—C20—C19119.0 (2)
H10A—C10—H10B108.0C21—C20—H20120.5
C12—C11—C10111.59 (19)C19—C20—H20120.5
C12—C11—H11A109.3C20—C21—C16119.5 (2)
C10—C11—H11A109.3C20—C21—H21120.3
C12—C11—H11B109.3C16—C21—H21120.3
O2—S1—C1—C8146.84 (17)C7—O1—C8—C15179.75 (17)
C16—S1—C1—C8102.33 (18)C3—C4—C9—C1060.3 (2)
O2—S1—C1—C232.9 (2)C5—C4—C9—C10119.9 (2)
C16—S1—C1—C277.98 (19)C3—C4—C9—C1464.4 (2)
C8—C1—C2—C3178.9 (2)C5—C4—C9—C14115.3 (2)
S1—C1—C2—C30.8 (4)C4—C9—C10—C11179.87 (18)
C8—C1—C2—C70.1 (2)C14—C9—C10—C1154.5 (3)
S1—C1—C2—C7179.79 (15)C9—C10—C11—C1255.4 (3)
C7—C2—C3—C40.8 (3)C10—C11—C12—C1355.4 (3)
C1—C2—C3—C4179.7 (2)C11—C12—C13—C1455.1 (3)
C2—C3—C4—C50.2 (3)C4—C9—C14—C13179.11 (19)
C2—C3—C4—C9179.96 (17)C10—C9—C14—C1355.0 (3)
C3—C4—C5—C60.0 (3)C12—C13—C14—C955.4 (3)
C9—C4—C5—C6179.74 (19)O2—S1—C16—C17156.18 (15)
C4—C5—C6—C70.3 (3)C1—S1—C16—C1792.99 (16)
C5—C6—C7—O1179.92 (18)O2—S1—C16—C2121.95 (19)
C5—C6—C7—C20.9 (3)C1—S1—C16—C2188.88 (18)
C8—O1—C7—C6179.9 (2)C21—C16—C17—C181.2 (3)
C8—O1—C7—C20.8 (2)S1—C16—C17—C18179.39 (15)
C3—C2—C7—C61.2 (3)C16—C17—C18—C191.4 (3)
C1—C2—C7—C6179.60 (19)C17—C18—C19—C200.8 (3)
C3—C2—C7—O1179.69 (17)C17—C18—C19—Br1178.19 (15)
C1—C2—C7—O10.5 (2)C18—C19—C20—C210.1 (3)
C2—C1—C8—O10.6 (2)Br1—C19—C20—C21178.94 (17)
S1—C1—C8—O1179.68 (13)C19—C20—C21—C160.1 (3)
C2—C1—C8—C15179.2 (2)C17—C16—C21—C200.5 (3)
S1—C1—C8—C151.1 (3)S1—C16—C21—C20178.55 (17)
C7—O1—C8—C10.9 (2)
Hydrogen-bond geometry (Å, °) top
Cg2 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.952.473.112 (3)125.
C15—H15B···Cg2ii0.983.063.532 (3)111.
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, −y+1, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg2 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.952.473.112 (3)125.
C15—H15B···Cg2ii0.983.063.532 (3)111.
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, −y+1, −z+1.
Acknowledgements top

This work was supported by Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

references
References top

Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.

Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o768.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1157.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.

Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.