supplementary materials


fj2490 scheme

Acta Cryst. (2012). E68, m65-m66    [ doi:10.1107/S1600536811053736 ]

Tris(ethylenediamine-[kappa]2N,N')cobalt(III) aquatris(oxalato-[kappa]2O1,O2)indate(III)

Z. Zhang, F. Wang and S. Liao

Abstract top

In the cation of the title compound, [Co(C2H8N2)3][In(C2O4)3(H2O)], the CoIII atom is coordinated by six N atoms from three ethylenediamine molecules. The CoIII-N bond lengths lie in the range 1.956 (4)-1.986 (4) Å. In the anion, the InIII atom is seven-coordinated by six O atoms from three oxalate ligands and by a water molecule. The cations and anions are linked by extensive O-H...O and N-H...O hydrogen bonds, forming a supermolecular network.

Comment top

Currently, more attention has been paid to employ chiral metal complexes as template, for its wide of shapes, charges and particularly chirality. Up to now, series of metal phosphates and germanates with interesting stuctures have been prepared by using such chiral metal complexes as the template (Wang et al., 2003a; Pan et al. 2005, 2008; Du et al. 2004). And a new concept of chirality transfer of the metal complex into the inorganic host framework has been demonstrated by Yu et al.(Wang et al., 2003b,c). Recently, Pan et al. introduced it into the system coordination polymers, a series of metal oxalates were obtained using metal complex cations as template (Pan et al., 2010a,b, 2011). More recently, they reported [Co(C2H8N2)3]3+[In(C2O4)2(CHO2)2]3- .2H2O, a formate oxalate mixed coordinated complex (Tong & Pan 2011). In this paper, we present a new complex [Co(C2H8N2)3]3+[In(C2O4)3(H2O)]3-. As shown in Fig. 1, the crystal structure of (I) consists of a discrete [In(C2O4)3(H2O)]3- anions and [Co(en)3]3+ cations. The InIII ions was seven coordinated and surrounded by three different chelting oxalate and a coordinated water molecule. And the CoIII atom in the cation was connected six N atoms from three different chelting ethylenediamine in a distorted octahedral geometry. The cations and the anions were connected each other through hydrogen bonds to giving a supermolecule entity.

Related literature top

For metal phosphates and germanates templated by metal complexes, see: Du et al. (2004); Pan et al. (2005, 2008); Wang et al. (2003a,b,c). For coordination polymers templated by metal complexes, see: Pan et al. (2010a,b, 2011), Tong & Pan (2011).

Experimental top

In a typical synthesis, a mixture of In(NO3)3.5H2O (1 mmol), Co(en)3Cl3 (0.14 mmol), K2C2O4.H2O (2 mmol) and H2O (10 ml), was added to a 20 ml Teflon-lined reactor under autogenous pressure at 120 °C for 4 days.

Refinement top

All H atoms were positioned geometrically (C—H = 0.97 Å, N—H = 0.90 Å and O—H = 0.85 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of complex. Ellipsoids are drawn at the 30% probability level.
Tris(ethylenediamine-κ2N,N')cobalt(III) aquatris(oxalato-κ2O1,O2)indate(III) top
Crystal data top
[Co(C2H8N2)3][In(C2O4)3(H2O)]Z = 2
Mr = 636.14F(000) = 640
Triclinic, P1Dx = 1.927 Mg m3
a = 7.5161 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.921 (2) ÅCell parameters from 10592 reflections
c = 14.450 (3) Åθ = 3.0–27.5°
α = 79.43 (3)°µ = 1.89 mm1
β = 80.13 (3)°T = 293 K
γ = 71.25 (3)°Block, yellow
V = 1096.1 (4) Å30.3 × 0.2 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
4988 independent reflections
Radiation source: fine-focus sealed tube4360 reflections with I > 2σ(I)
graphiteRint = 0.056
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
h = 99
Tmin = 0.6, Tmax = 0.8k = 1414
11056 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119Only H-atom displacement parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.7829P]
where P = (Fo2 + 2Fc2)/3
4988 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Co(C2H8N2)3][In(C2O4)3(H2O)]γ = 71.25 (3)°
Mr = 636.14V = 1096.1 (4) Å3
Triclinic, P1Z = 2
a = 7.5161 (15) ÅMo Kα radiation
b = 10.921 (2) ŵ = 1.89 mm1
c = 14.450 (3) ÅT = 293 K
α = 79.43 (3)°0.3 × 0.2 × 0.18 mm
β = 80.13 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
4988 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
4360 reflections with I > 2σ(I)
Tmin = 0.6, Tmax = 0.8Rint = 0.056
11056 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.048Only H-atom displacement parameters refined
wR(F2) = 0.119Δρmax = 1.32 e Å3
S = 1.10Δρmin = 0.91 e Å3
4988 reflectionsAbsolute structure: ?
300 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.41280 (4)0.27178 (3)0.70832 (2)0.02767 (11)
Co10.13688 (7)0.26192 (5)1.23880 (4)0.02715 (15)
O10.2854 (5)0.4022 (3)0.8190 (2)0.0379 (7)
O20.2698 (5)0.4142 (3)0.9718 (2)0.0490 (9)
O30.5453 (5)0.1704 (3)0.8361 (2)0.0402 (8)
O40.5603 (6)0.1847 (4)0.9864 (3)0.0681 (12)
O50.1303 (4)0.2508 (3)0.7207 (3)0.0400 (8)
O60.0236 (4)0.1146 (3)0.7043 (3)0.0480 (9)
O70.4574 (4)0.0573 (3)0.7116 (2)0.0386 (7)
O80.2982 (5)0.0880 (3)0.7345 (3)0.0517 (9)
O90.4602 (5)0.2478 (3)0.5559 (2)0.0449 (8)
O100.4079 (6)0.3539 (4)0.4111 (2)0.0564 (10)
O110.2819 (4)0.4654 (3)0.6321 (2)0.0349 (7)
O120.2215 (6)0.5763 (4)0.4920 (3)0.0660 (12)
O130.6771 (4)0.3184 (3)0.6787 (2)0.0382 (7)
H13A0.690 (3)0.380 (4)0.628 (3)0.080*
H13B0.792 (5)0.272 (2)0.686 (3)0.080*
N10.1017 (6)0.2554 (4)1.3206 (3)0.0410 (9)
H1A0.16760.33551.33530.080*
H1B0.17340.22881.28940.080*
N20.2587 (5)0.1761 (4)1.3530 (3)0.0353 (8)
H2A0.32320.09241.34640.080*
H2B0.34140.21631.36070.080*
N30.1680 (5)0.0943 (3)1.1973 (3)0.0362 (8)
H3A0.28830.04331.20010.080*
H3B0.09170.05341.23640.080*
N40.0045 (6)0.3375 (4)1.1268 (3)0.0394 (9)
H4A0.10140.40151.14200.080*
H4B0.07900.37271.08150.080*
N50.3809 (5)0.2696 (3)1.1686 (3)0.0334 (8)
H5A0.47360.20151.19220.080*
H5B0.38180.26281.10740.080*
N60.1154 (5)0.4369 (4)1.2661 (3)0.0376 (9)
H6A0.00620.48681.26900.080*
H6B0.15640.43051.32230.080*
C10.0561 (8)0.1636 (5)1.4084 (4)0.0488 (12)
H1C0.03030.07451.39670.080*
H1D0.16200.18221.45790.080*
C20.1141 (8)0.1807 (5)1.4380 (4)0.0489 (12)
H2C0.08170.26371.46160.080*
H2D0.16300.11151.48810.080*
C30.1212 (8)0.1146 (5)1.0987 (4)0.0470 (12)
H3C0.08860.04041.08660.080*
H3D0.22830.12531.05340.080*
C40.0453 (8)0.2366 (5)1.0901 (4)0.0490 (13)
H4C0.06840.26431.02440.080*
H4D0.15840.22081.12690.080*
C50.4190 (7)0.3938 (4)1.1746 (3)0.0388 (10)
H5C0.49190.41991.11650.080*
H5D0.49090.38191.22700.080*
C60.2320 (7)0.4966 (4)1.1895 (3)0.0384 (10)
H6C0.24910.57281.20780.080*
H6D0.17180.52281.13180.080*
C70.3368 (6)0.3589 (4)0.9016 (3)0.0349 (10)
C80.4958 (7)0.2256 (4)0.9099 (3)0.0396 (10)
C90.1204 (6)0.1394 (4)0.7148 (3)0.0345 (10)
C100.3067 (6)0.0259 (4)0.7209 (3)0.0347 (10)
C110.3953 (7)0.3486 (5)0.4982 (3)0.0392 (11)
C120.2895 (6)0.4741 (4)0.5431 (3)0.0380 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.02796 (18)0.02283 (16)0.03195 (19)0.00503 (12)0.00555 (12)0.00598 (11)
Co10.0254 (3)0.0220 (3)0.0337 (3)0.0050 (2)0.0045 (2)0.0058 (2)
O10.0447 (19)0.0308 (15)0.0320 (17)0.0010 (13)0.0064 (14)0.0096 (13)
O20.063 (2)0.0385 (18)0.0382 (19)0.0011 (16)0.0030 (16)0.0148 (15)
O30.049 (2)0.0324 (16)0.0285 (17)0.0043 (14)0.0057 (14)0.0049 (13)
O40.084 (3)0.064 (2)0.035 (2)0.017 (2)0.021 (2)0.0108 (17)
O50.0311 (16)0.0246 (15)0.064 (2)0.0069 (13)0.0073 (15)0.0074 (14)
O60.0311 (17)0.0337 (17)0.081 (3)0.0111 (14)0.0150 (17)0.0010 (16)
O70.0299 (16)0.0235 (14)0.064 (2)0.0061 (12)0.0103 (15)0.0092 (14)
O80.045 (2)0.0237 (15)0.090 (3)0.0096 (14)0.0235 (19)0.0037 (16)
O90.062 (2)0.0368 (17)0.0375 (19)0.0119 (16)0.0079 (16)0.0119 (14)
O100.088 (3)0.064 (2)0.0312 (19)0.037 (2)0.0131 (18)0.0094 (16)
O110.0371 (17)0.0289 (15)0.0360 (18)0.0072 (13)0.0048 (13)0.0018 (12)
O120.074 (3)0.054 (2)0.045 (2)0.003 (2)0.001 (2)0.0100 (18)
O130.0284 (16)0.0433 (18)0.0405 (19)0.0103 (14)0.0089 (14)0.0036 (14)
N10.037 (2)0.036 (2)0.051 (3)0.0107 (17)0.0003 (18)0.0150 (18)
N20.034 (2)0.038 (2)0.032 (2)0.0093 (16)0.0043 (16)0.0031 (15)
N30.035 (2)0.0281 (18)0.045 (2)0.0071 (16)0.0074 (17)0.0065 (16)
N40.037 (2)0.0297 (19)0.051 (2)0.0055 (16)0.0143 (18)0.0031 (17)
N50.034 (2)0.0295 (18)0.034 (2)0.0058 (15)0.0048 (16)0.0040 (15)
N60.035 (2)0.0336 (19)0.045 (2)0.0090 (16)0.0006 (17)0.0140 (16)
C10.053 (3)0.050 (3)0.046 (3)0.025 (3)0.013 (2)0.014 (2)
C20.053 (3)0.058 (3)0.037 (3)0.021 (3)0.001 (2)0.009 (2)
C30.065 (3)0.041 (3)0.042 (3)0.020 (2)0.013 (2)0.011 (2)
C40.054 (3)0.046 (3)0.055 (3)0.016 (2)0.026 (3)0.006 (2)
C50.040 (3)0.039 (2)0.043 (3)0.018 (2)0.002 (2)0.010 (2)
C60.047 (3)0.027 (2)0.045 (3)0.016 (2)0.008 (2)0.0044 (19)
C70.035 (2)0.028 (2)0.040 (3)0.0077 (18)0.0037 (19)0.0062 (18)
C80.042 (3)0.038 (2)0.034 (3)0.006 (2)0.006 (2)0.0024 (19)
C90.029 (2)0.029 (2)0.045 (3)0.0074 (18)0.0074 (19)0.0020 (18)
C100.037 (2)0.025 (2)0.044 (3)0.0088 (18)0.014 (2)0.0025 (18)
C110.048 (3)0.045 (3)0.033 (3)0.024 (2)0.009 (2)0.005 (2)
C120.034 (2)0.037 (2)0.040 (3)0.0125 (19)0.002 (2)0.0031 (19)
Geometric parameters (Å, °) top
In1—O132.160 (3)N2—H2B0.9000
In1—O52.182 (3)N3—C31.487 (6)
In1—O32.191 (3)N3—H3A0.9000
In1—O112.199 (3)N3—H3B0.9000
In1—O92.221 (3)N4—C41.477 (6)
In1—O12.222 (3)N4—H4A0.9000
In1—O72.250 (3)N4—H4B0.9000
Co1—N41.956 (4)N5—C51.494 (5)
Co1—N51.957 (4)N5—H5A0.9000
Co1—N21.959 (4)N5—H5B0.9000
Co1—N31.960 (4)N6—C61.479 (6)
Co1—N61.972 (4)N6—H6A0.9000
Co1—N11.986 (4)N6—H6B0.9000
O1—C71.277 (5)C1—C21.492 (7)
O2—C71.225 (5)C1—H1C0.9700
O3—C81.263 (5)C1—H1D0.9700
O4—C81.234 (6)C2—H2C0.9700
O5—C91.262 (5)C2—H2D0.9700
O6—C91.236 (5)C3—C41.509 (7)
O7—C101.265 (5)C3—H3C0.9700
O8—C101.244 (5)C3—H3D0.9700
O9—C111.266 (6)C4—H4C0.9700
O10—C111.238 (6)C4—H4D0.9700
O11—C121.265 (5)C5—C61.501 (6)
O12—C121.230 (6)C5—H5C0.9700
O13—H13A0.9135C5—H5D0.9700
O13—H13B0.8610C6—H6C0.9700
N1—C11.481 (7)C6—H6D0.9700
N1—H1A0.9000C7—C81.559 (6)
N1—H1B0.9000C9—C101.546 (6)
N2—C21.491 (6)C11—C121.543 (7)
N2—H2A0.9000
O13—In1—O5170.86 (11)H4A—N4—H4B108.1
O13—In1—O379.09 (12)C5—N5—Co1111.8 (3)
O5—In1—O3109.59 (13)C5—N5—H5A109.3
O13—In1—O1187.46 (12)Co1—N5—H5A109.3
O5—In1—O1183.75 (12)C5—N5—H5B109.3
O3—In1—O11143.84 (12)Co1—N5—H5B109.3
O13—In1—O984.67 (13)H5A—N5—H5B107.9
O5—In1—O990.49 (13)C6—N6—Co1108.4 (3)
O3—In1—O9136.66 (12)C6—N6—H6A110.0
O11—In1—O973.94 (12)Co1—N6—H6A110.0
O13—In1—O195.45 (12)C6—N6—H6B110.0
O5—In1—O184.56 (12)Co1—N6—H6B110.0
O3—In1—O173.95 (11)H6A—N6—H6B108.4
O11—In1—O174.14 (11)N1—C1—C2107.7 (4)
O9—In1—O1148.04 (12)N1—C1—H1C110.2
O13—In1—O7111.82 (12)C2—C1—H1C110.2
O5—In1—O774.38 (11)N1—C1—H1D110.2
O3—In1—O772.79 (12)C2—C1—H1D110.2
O11—In1—O7142.94 (12)H1C—C1—H1D108.5
O9—In1—O776.66 (12)N2—C2—C1107.3 (4)
O1—In1—O7131.28 (12)N2—C2—H2C110.2
N4—Co1—N592.52 (17)C1—C2—H2C110.2
N4—Co1—N2175.52 (16)N2—C2—H2D110.2
N5—Co1—N290.62 (16)C1—C2—H2D110.2
N4—Co1—N384.54 (16)H2C—C2—H2D108.5
N5—Co1—N391.28 (16)N3—C3—C4106.4 (4)
N2—Co1—N392.20 (16)N3—C3—H3C110.5
N4—Co1—N691.28 (16)C4—C3—H3C110.5
N5—Co1—N684.23 (15)N3—C3—H3D110.5
N2—Co1—N692.22 (16)C4—C3—H3D110.5
N3—Co1—N6173.73 (16)H3C—C3—H3D108.6
N4—Co1—N192.14 (18)N4—C4—C3106.5 (4)
N5—Co1—N1174.76 (16)N4—C4—H4C110.4
N2—Co1—N184.87 (17)C3—C4—H4C110.4
N3—Co1—N191.56 (16)N4—C4—H4D110.4
N6—Co1—N193.26 (16)C3—C4—H4D110.4
C7—O1—In1116.6 (3)H4C—C4—H4D108.6
C8—O3—In1118.2 (3)N5—C5—C6107.9 (4)
C9—O5—In1117.0 (3)N5—C5—H5C110.1
C10—O7—In1114.6 (3)C6—C5—H5C110.1
C11—O9—In1116.8 (3)N5—C5—H5D110.1
C12—O11—In1116.9 (3)C6—C5—H5D110.1
In1—O13—H13A118.1H5C—C5—H5D108.4
In1—O13—H13B132.1N6—C6—C5106.2 (4)
H13A—O13—H13B104.0N6—C6—H6C110.5
C1—N1—Co1109.3 (3)C5—C6—H6C110.5
C1—N1—H1A109.8N6—C6—H6D110.5
Co1—N1—H1A109.8C5—C6—H6D110.5
C1—N1—H1B109.8H6C—C6—H6D108.7
Co1—N1—H1B109.8O2—C7—O1124.7 (4)
H1A—N1—H1B108.3O2—C7—C8119.9 (4)
C2—N2—Co1110.4 (3)O1—C7—C8115.4 (4)
C2—N2—H2A109.6O4—C8—O3126.7 (4)
Co1—N2—H2A109.6O4—C8—C7117.8 (4)
C2—N2—H2B109.6O3—C8—C7115.6 (4)
Co1—N2—H2B109.6O6—C9—O5125.6 (4)
H2A—N2—H2B108.1O6—C9—C10118.4 (4)
C3—N3—Co1110.6 (3)O5—C9—C10116.0 (4)
C3—N3—H3A109.5O8—C10—O7125.0 (4)
Co1—N3—H3A109.5O8—C10—C9118.4 (4)
C3—N3—H3B109.5O7—C10—C9116.5 (4)
Co1—N3—H3B109.5O10—C11—O9125.9 (5)
H3A—N3—H3B108.1O10—C11—C12118.6 (4)
C4—N4—Co1110.6 (3)O9—C11—C12115.5 (4)
C4—N4—H4A109.5O12—C12—O11123.6 (5)
Co1—N4—H4A109.5O12—C12—C11119.6 (4)
C4—N4—H4B109.5O11—C12—C11116.8 (4)
Co1—N4—H4B109.5
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O12i0.911.792.620 (5)150
O13—H13B···O6ii0.861.842.629 (4)152
N1—H1A···O11iii0.902.173.064 (5)171
N1—H1B···O8iv0.902.142.972 (5)153
N2—H2A···O7v0.902.102.935 (5)155
N2—H2B···O10vi0.902.012.838 (5)152
N3—H3A···O7v0.902.343.142 (5)149
N3—H3A···O3v0.902.373.063 (5)134
N3—H3B···O6iv0.902.062.878 (5)151
N4—H4A···O1iii0.902.263.114 (5)159
N4—H4A···O2iii0.902.493.103 (5)126
N4—H4B···O20.902.042.924 (6)168
N5—H5A···O8v0.902.092.962 (5)163
N5—H5B···O40.902.142.912 (5)143
N5—H5B···O20.902.403.099 (5)135
N6—H6A···O11iii0.902.273.040 (5)143
N6—H6A···O1iii0.902.493.279 (5)147
N6—H6B···O10vi0.902.313.105 (5)147
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x, −y+1, −z+2; (iv) −x, −y, −z+2; (v) −x+1, −y, −z+2; (vi) x, y, z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O12i0.911.792.620 (5)150
O13—H13B···O6ii0.861.842.629 (4)152
N1—H1A···O11iii0.902.173.064 (5)171
N1—H1B···O8iv0.902.142.972 (5)153
N2—H2A···O7v0.902.102.935 (5)155
N2—H2B···O10vi0.902.012.838 (5)152
N3—H3A···O7v0.902.343.142 (5)149
N3—H3A···O3v0.902.373.063 (5)134
N3—H3B···O6iv0.902.062.878 (5)151
N4—H4A···O1iii0.902.263.114 (5)159
N4—H4A···O2iii0.902.493.103 (5)126
N4—H4B···O20.902.042.924 (6)168
N5—H5A···O8v0.902.092.962 (5)163
N5—H5B···O40.902.142.912 (5)143
N5—H5B···O20.902.403.099 (5)135
N6—H6A···O11iii0.902.273.040 (5)143
N6—H6A···O1iii0.902.493.279 (5)147
N6—H6B···O10vi0.902.313.105 (5)147
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x, −y+1, −z+2; (iv) −x, −y, −z+2; (v) −x+1, −y, −z+2; (vi) x, y, z+1.
Acknowledgements top

This work was supported by the Foundation of Hainan University (No. hd09xm69) and the University Scientific Research Foundation of the Education Committee of Hainan Province (No. HJKL2009–16).

references
References top

Du, Y., Yu, J. H. & Xu, R. R. (2004). J. Solid State Chem. 177, 2032–3037.

Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204.

Pan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531.

Pan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453–457.

Pan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202.

Pan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tong, J. & Pan, Q. (2011). Acta Cryst. E67, m579–m580.

Wang, Y., Yu, J. H. & Xu, R. R. (2003a). J. Solid State Chem. 170, 176–3037.

Wang, Y., Yu, J. H. & Xu, R. R. (2003b). Angew. Chem. Int. Ed. 42, 4089–4092.

Wang, Y., Yu, J. H. & Xu, R. R. (2003c). Chem. Eur. J. 9, 5048–5055.