organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-({[4-(1,3-Benzo­thia­zol-2-yl)phen­yl]amino}methyl)­phenol

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 3 November 2011; accepted 30 November 2011; online 3 December 2011)

In the title compound, C20H16N2OS, the aniline substituent essentially coplanar with the benzothia­zole moiety (with an r.m.s. deviation of all fitted non-H atoms of 0.0612 Å). The phenol group is almost perpendic­ular to the benzothia­zolylaniline group, with an inter­planar angle of 88.36 (2)°. In the crystal, mol­ecules aggregate as centrosymmetric dimers by pairs of O—H⋯N hydrogen bonds. C—H⋯O contacts and N—H⋯π(arene) inter­actions also occur.

Related literature

For general information about rhenium-supported radio-pharmaceuticals, see: Gerber et al. (2011[Gerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739-1745.]). For the crystal structure of 4-(1,3-benzothia­zol-2-yl)-N-(2-pyridyl­meth­yl)aniline monohydrate, see: Su et al. (2009[Su, Z.-H., Wang, Q.-Z., Teng, L. & Zhang, Y. (2009). Acta Cryst. E65, o86.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2OS

  • Mr = 332.41

  • Monoclinic, P 21 /c

  • a = 13.3260 (4) Å

  • b = 5.7940 (1) Å

  • c = 24.2246 (6) Å

  • β = 121.546 (1)°

  • V = 1593.99 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.44 × 0.17 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 1.000

  • 15126 measured reflections

  • 3953 independent reflections

  • 3272 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.03

  • 3953 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.95 2.7459 (14) 164
C26—H26⋯O1i 0.95 2.48 3.3645 (16) 156
N2—H72⋯Cgii 0.82 (2) 2.61 (2) 3.4024 (14) 163.0 (19)
Symmetry codes: (i) -x, -y, -z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In our continuous efforts to create new radio-pharmaceuticals (Gerber et al., 2011), we attempted the coordination reaction of a potentially multidentate ligand towards a rhenium precursor upon which a crystalline reaction product was obtained. The crystal structure analysis showed the presence of the free ligand only whose molecular and crystal structure has not been reported to date. The structure of 4-(1,3-benzothiazol-2-yl)-N-(2-pyridylmethyl) aniline monohydrate is noted in the literature (Su et al., 2009).

The benzothiazolyl system and the attached aniline system are nearly co-planar (r.m.s. of all fitted non-hydrogen atoms including the nitrogen bound methylene group = 0.0612 Å). The phenolic substituent, however, adopts a nearly perpendicular orientation with respect to the rest of the molecule, with an interplanar angle of 88.36 (2)° between the two least-squares planes defined by both moieties (Fig. 1).

In the crystal, classical hydrogen bonds of the O–H···N type as well as C–H···O contacts (whose range lies by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating) are observed. The latter are supported by one of the hydrogen atoms of the central phenyl ring. In total, the molecules are connected to centrosymmetric dimers by these two interactions. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is R22(18)R22(24) on the unitary level. The nitrogen-bonded hydrogen atom forms a hydrogen bond to the aromatic system of the phenolic moiety, connecting the molecules to chains along the crystallographic b axis. Metrical parameters about these contacts as well as information about their symmetry is listed in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 4.6019 (10) Å and is apparent between the phenyl unit of the benzothiazole moiety and the central C6 aromatic ring (Fig 2.)

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For general information about rhenium-supported radio-pharmaceuticals, see: Gerber et al. (2011). For the crystal structure of 4-(1,3-benzothiazol-2-yl)-N-(2-pyridylmethyl)aniline monohydrate, see: Su et al. (2009). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

A mixture of 2.00 g of 4-aminobenzoic acid and 1.33 g of 2-aminothiophenol was added to hot polyphosphoric acid. The stirring solution was heated to 220 °C for four hours. The reaction solution was cooled to room temperature and poured into a 10% K2CO3 solution. The yellow precipitate which formed was filtered and dried under vacuum, yielding 4-(benzo[d]thiazol-2-yl)benzenamine. A solution of 1.0 g of this product dissolved in 25 cm3 of methanol was added to a 25 cm3 methanol solution of 2-hydroxybenzaldehyde (0.4 g). The solution was refluxed for three hours after which it was cooled to room temperature and stirred overnight. An excess of NaBH4 (2.0 g) was added in portions with stirring and the mixture was left to stir at room temperature overnight. The solvent was removed by evaporation and 50 cm3 of water was added. HCl was added to adjust the pH to 6, resulting in the formation of a light yellow precipitate which was filtered and dried under vacuum. Crystals suitable for the X-ray diffraction study were obtained upon the attempted synthesis of a rhenium coordination compound in ethanol.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for the methylene group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O). The nitrogen-bound H atom was located on a difference Fourier map and refined freely with isotropic parameters.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 1 0]. Blue dashed lines indicate classical hydrogen bonds of the O–H···N type, green dashed lines indicate C–H···O contacts. Symmetry operator: i -x, -y, -z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2-({[4-(1,3-Benzothiazol-2-yl)phenyl]amino}methyl)phenol top
Crystal data top
C20H16N2OSF(000) = 696
Mr = 332.41Dx = 1.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 7469 reflections
a = 13.3260 (4) Åθ = 3.1–28.3°
b = 5.7940 (1) ŵ = 0.21 mm1
c = 24.2246 (6) ÅT = 200 K
β = 121.546 (1)°Platelet, brown
V = 1593.99 (7) Å30.44 × 0.17 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3953 independent reflections
Radiation source: fine-focus sealed tube3272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.929, Tmax = 1.000k = 47
15126 measured reflectionsl = 3132
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.6757P]
where P = (Fo2 + 2Fc2)/3
3953 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H16N2OSV = 1593.99 (7) Å3
Mr = 332.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3260 (4) ŵ = 0.21 mm1
b = 5.7940 (1) ÅT = 200 K
c = 24.2246 (6) Å0.44 × 0.17 × 0.11 mm
β = 121.546 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3953 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3272 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 1.000Rint = 0.018
15126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
3953 reflectionsΔρmin = 0.23 e Å3
221 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42147 (3)0.68632 (6)0.257240 (17)0.03011 (10)
O10.15303 (8)0.05617 (17)0.19880 (5)0.0317 (2)
H10.19510.05630.21670.048*
N10.31149 (9)0.30173 (19)0.24291 (5)0.0264 (2)
N20.09494 (11)0.5026 (2)0.06249 (6)0.0317 (3)
H720.1055 (16)0.621 (4)0.0774 (9)0.049 (5)*
C10.32433 (11)0.4656 (2)0.20995 (6)0.0246 (3)
C20.00373 (12)0.3473 (2)0.10753 (6)0.0291 (3)
H2A0.05410.43670.14600.035*
H2B0.03800.28510.08690.035*
C110.44852 (11)0.5440 (2)0.32639 (7)0.0284 (3)
C120.38217 (11)0.3396 (2)0.30904 (6)0.0273 (3)
C130.39226 (13)0.1916 (3)0.35715 (7)0.0343 (3)
H130.34840.05210.34610.041*
C140.46741 (14)0.2528 (3)0.42110 (7)0.0398 (3)
H140.47550.15340.45440.048*
C150.53187 (13)0.4580 (3)0.43785 (7)0.0390 (3)
H150.58210.49620.48230.047*
C160.52407 (12)0.6063 (3)0.39127 (7)0.0344 (3)
H160.56830.74540.40280.041*
C210.26744 (11)0.4708 (2)0.13979 (6)0.0254 (3)
C220.27965 (12)0.6609 (2)0.10797 (7)0.0295 (3)
H220.32800.78660.13280.035*
C230.22327 (12)0.6691 (2)0.04174 (7)0.0305 (3)
H230.23310.80040.02150.037*
C240.15098 (11)0.4861 (2)0.00317 (6)0.0266 (3)
C250.14071 (12)0.2928 (2)0.03483 (7)0.0296 (3)
H250.09410.16520.01010.035*
C260.19777 (12)0.2865 (2)0.10154 (6)0.0286 (3)
H260.18960.15410.12200.034*
C310.04626 (11)0.1472 (2)0.12987 (6)0.0250 (3)
C320.03897 (11)0.0004 (2)0.17724 (6)0.0258 (3)
C330.00650 (12)0.1827 (2)0.20165 (6)0.0306 (3)
H330.06490.28060.23400.037*
C340.11211 (13)0.2216 (3)0.17839 (7)0.0351 (3)
H340.13480.34670.19490.042*
C350.19715 (12)0.0793 (3)0.13149 (7)0.0343 (3)
H350.27810.10730.11550.041*
C360.16400 (11)0.1046 (3)0.10779 (6)0.0302 (3)
H360.22280.20310.07590.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02935 (17)0.02586 (17)0.03296 (18)0.00579 (12)0.01480 (14)0.00429 (13)
O10.0241 (5)0.0321 (5)0.0340 (5)0.0054 (4)0.0118 (4)0.0005 (4)
N10.0234 (5)0.0264 (5)0.0283 (5)0.0015 (4)0.0129 (4)0.0011 (4)
N20.0387 (7)0.0273 (6)0.0282 (6)0.0073 (5)0.0170 (5)0.0016 (5)
C10.0209 (6)0.0219 (6)0.0310 (6)0.0003 (4)0.0137 (5)0.0028 (5)
C20.0284 (6)0.0303 (7)0.0277 (6)0.0025 (5)0.0139 (5)0.0015 (5)
C110.0235 (6)0.0298 (7)0.0322 (7)0.0015 (5)0.0147 (5)0.0033 (5)
C120.0227 (6)0.0293 (6)0.0297 (6)0.0017 (5)0.0137 (5)0.0015 (5)
C130.0342 (7)0.0341 (7)0.0349 (7)0.0010 (6)0.0182 (6)0.0023 (6)
C140.0390 (8)0.0489 (9)0.0314 (7)0.0077 (7)0.0184 (6)0.0055 (7)
C150.0305 (7)0.0531 (9)0.0281 (7)0.0051 (6)0.0117 (6)0.0059 (6)
C160.0264 (6)0.0396 (8)0.0342 (7)0.0003 (6)0.0138 (6)0.0093 (6)
C210.0231 (6)0.0245 (6)0.0300 (6)0.0003 (5)0.0149 (5)0.0010 (5)
C220.0281 (6)0.0244 (6)0.0332 (7)0.0057 (5)0.0142 (6)0.0027 (5)
C230.0328 (7)0.0252 (6)0.0339 (7)0.0044 (5)0.0177 (6)0.0018 (5)
C240.0275 (6)0.0246 (6)0.0299 (6)0.0004 (5)0.0166 (5)0.0007 (5)
C250.0352 (7)0.0237 (6)0.0314 (7)0.0058 (5)0.0186 (6)0.0043 (5)
C260.0346 (7)0.0228 (6)0.0321 (7)0.0030 (5)0.0201 (6)0.0009 (5)
C310.0266 (6)0.0275 (6)0.0216 (6)0.0027 (5)0.0131 (5)0.0017 (5)
C320.0253 (6)0.0294 (6)0.0211 (6)0.0027 (5)0.0111 (5)0.0038 (5)
C330.0344 (7)0.0301 (7)0.0236 (6)0.0045 (5)0.0128 (5)0.0019 (5)
C340.0400 (8)0.0370 (8)0.0309 (7)0.0022 (6)0.0204 (6)0.0031 (6)
C350.0279 (7)0.0420 (8)0.0337 (7)0.0009 (6)0.0165 (6)0.0007 (6)
C360.0260 (6)0.0350 (7)0.0274 (6)0.0046 (5)0.0124 (5)0.0023 (5)
Geometric parameters (Å, º) top
S1—C111.7275 (14)C16—H160.9500
S1—C11.7526 (13)C21—C261.3999 (18)
O1—C321.3627 (15)C21—C221.4018 (18)
O1—H10.8200C22—C231.3709 (19)
N1—C11.3082 (17)C22—H220.9500
N1—C121.3866 (16)C23—C241.4083 (18)
N2—C241.3616 (17)C23—H230.9500
N2—C21.4459 (17)C24—C251.4038 (18)
N2—H720.82 (2)C25—C261.3804 (19)
C1—C211.4547 (18)C25—H250.9500
C2—C311.5098 (19)C26—H260.9500
C2—H2A0.9900C31—C361.3893 (18)
C2—H2B0.9900C31—C321.4022 (17)
C11—C161.3995 (19)C32—C331.3890 (19)
C11—C121.4042 (19)C33—C341.391 (2)
C12—C131.3954 (19)C33—H330.9500
C13—C141.380 (2)C34—C351.381 (2)
C13—H130.9500C34—H340.9500
C14—C151.397 (2)C35—C361.388 (2)
C14—H140.9500C35—H350.9500
C15—C161.378 (2)C36—H360.9500
C15—H150.9500
C11—S1—C189.62 (6)C22—C21—C1121.28 (11)
C32—O1—H1109.4C23—C22—C21121.38 (12)
C1—N1—C12111.32 (11)C23—C22—H22119.3
C24—N2—C2124.65 (12)C21—C22—H22119.3
C24—N2—H72117.2 (13)C22—C23—C24121.07 (12)
C2—N2—H72117.3 (13)C22—C23—H23119.5
N1—C1—C21124.99 (11)C24—C23—H23119.5
N1—C1—S1114.74 (10)N2—C24—C25122.93 (12)
C21—C1—S1120.26 (9)N2—C24—C23119.26 (12)
N2—C2—C31115.06 (11)C25—C24—C23117.81 (12)
N2—C2—H2A108.5C26—C25—C24120.60 (12)
C31—C2—H2A108.5C26—C25—H25119.7
N2—C2—H2B108.5C24—C25—H25119.7
C31—C2—H2B108.5C25—C26—C21121.54 (12)
H2A—C2—H2B107.5C25—C26—H26119.2
C16—C11—C12121.61 (13)C21—C26—H26119.2
C16—C11—S1128.92 (11)C36—C31—C32118.40 (12)
C12—C11—S1109.46 (10)C36—C31—C2123.94 (12)
N1—C12—C13125.32 (12)C32—C31—C2117.63 (11)
N1—C12—C11114.83 (12)O1—C32—C33123.46 (12)
C13—C12—C11119.84 (13)O1—C32—C31115.67 (12)
C14—C13—C12118.43 (14)C33—C32—C31120.80 (12)
C14—C13—H13120.8C32—C33—C34119.49 (12)
C12—C13—H13120.8C32—C33—H33120.3
C13—C14—C15121.28 (15)C34—C33—H33120.3
C13—C14—H14119.4C35—C34—C33120.40 (13)
C15—C14—H14119.4C35—C34—H34119.8
C16—C15—C14121.42 (14)C33—C34—H34119.8
C16—C15—H15119.3C34—C35—C36119.79 (13)
C14—C15—H15119.3C34—C35—H35120.1
C15—C16—C11117.41 (14)C36—C35—H35120.1
C15—C16—H16121.3C35—C36—C31121.11 (12)
C11—C16—H16121.3C35—C36—H36119.4
C26—C21—C22117.56 (12)C31—C36—H36119.4
C26—C21—C1121.16 (11)
C12—N1—C1—C21176.61 (11)C1—C21—C22—C23178.02 (12)
C12—N1—C1—S11.79 (14)C21—C22—C23—C240.1 (2)
C11—S1—C1—N11.11 (10)C2—N2—C24—C2511.3 (2)
C11—S1—C1—C21177.37 (11)C2—N2—C24—C23169.07 (13)
C24—N2—C2—C3193.43 (16)C22—C23—C24—N2178.90 (13)
C1—S1—C11—C16178.94 (13)C22—C23—C24—C251.4 (2)
C1—S1—C11—C120.09 (10)N2—C24—C25—C26178.83 (13)
C1—N1—C12—C13177.24 (13)C23—C24—C25—C261.5 (2)
C1—N1—C12—C111.72 (15)C24—C25—C26—C210.1 (2)
C16—C11—C12—N1180.00 (12)C22—C21—C26—C251.5 (2)
S1—C11—C12—N10.88 (14)C1—C21—C26—C25178.10 (12)
C16—C11—C12—C131.0 (2)N2—C2—C31—C362.59 (19)
S1—C11—C12—C13178.14 (10)N2—C2—C31—C32175.35 (11)
N1—C12—C13—C14179.44 (13)C36—C31—C32—O1177.51 (11)
C11—C12—C13—C140.5 (2)C2—C31—C32—O10.55 (16)
C12—C13—C14—C150.3 (2)C36—C31—C32—C330.21 (18)
C13—C14—C15—C160.8 (2)C2—C31—C32—C33177.85 (12)
C14—C15—C16—C110.3 (2)O1—C32—C33—C34177.58 (12)
C12—C11—C16—C150.5 (2)C31—C32—C33—C340.49 (19)
S1—C11—C16—C15178.40 (11)C32—C33—C34—C350.1 (2)
N1—C1—C21—C263.99 (19)C33—C34—C35—C360.5 (2)
S1—C1—C21—C26174.33 (10)C34—C35—C36—C310.8 (2)
N1—C1—C21—C22175.56 (12)C32—C31—C36—C350.44 (19)
S1—C1—C21—C226.12 (17)C2—C31—C36—C35178.37 (13)
C26—C21—C22—C231.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.952.7459 (14)164
C26—H26···O1i0.952.483.3645 (16)156
N2—H72···Cgii0.82 (2)2.61 (2)3.4024 (14)163.0 (19)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H16N2OS
Mr332.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)13.3260 (4), 5.7940 (1), 24.2246 (6)
β (°) 121.546 (1)
V3)1593.99 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.44 × 0.17 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.929, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15126, 3953, 3272
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.03
No. of reflections3953
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.952.7459 (14)163.6
C26—H26···O1i0.952.483.3645 (16)155.6
N2—H72···Cgii0.82 (2)2.61 (2)3.4024 (14)163.0 (19)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank Mr Jason Kopp for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739–1745.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Z.-H., Wang, Q.-Z., Teng, L. & Zhang, Y. (2009). Acta Cryst. E65, o86.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds