supplementary materials


gk2438 scheme

Acta Cryst. (2012). E68, m58    [ doi:10.1107/S1600536811053475 ]

Bis(O-ethyl dithiocarbonato-[kappa]2S,S')bis(pyridine-3-carbonitrile-[kappa]N1)nickel(II)

S. Kapoor, R. Kour, R. Sachar, R. Kant, V. K. Gupta and K. Kapoor

Abstract top

The Ni2+ ion in the title complex, [Ni(C3H5OS2)2(C6H4N2)2], is in a strongly distorted octahedral coordination environment formed by an N2S4 donor set, with the Ni2+ ion located on a centre of inversion. In the crystal, weak C-H...S and C-H...N interactions are observed.

Comment top

Xanthates (O-alkyl/aryl dithiocarbonates) have been known for a long time and many adducts of metal xanthates with different ligands have been prepared and studied in the last several decades. Adducts of transition metal xanthates with N-donor ligands are well represented in the literature, the most extensively studied being those of nickel(II). Nitrogen containing adducts of nickel(II) xanthates are known to adopt a variety of supramolecular assemblies (Tiekink & Haiduc, 2005). The Ni atom in (I) is located on a center of inversion and exists within a trans-N2S4 donor set that defines an approximately octahedral coordination geometry. The chelating xanthate ligand forms essentially equivalent Ni—S bond distances; this equivalence is reflected in the parameters defining the xanthate ligand. The bond angles around the Ni atom are in the range of 73.83 (2) to 180.00 (3)°. The Ni—S bond lengths, Ni1—S1 = 2.4335 (5); Ni1—S2 = 2.4450 (6) Å, are in good agreement with those reported for other Ni-dithiocarbonato complexes (Tiekink & Haiduc, 2005; Dakternieks et al., 2006; Hill & Tiekink, 2007; Hogarth et al., 2009). Molecules in the unit cell are packed together to form well defined layers. While no classical hydrogen bonds are present, the C—H···S and C—H···N hydrogen bonds (Table 1) play important role in stabilizing the crystal structure.

Related literature top

For related structures, see: Tiekink & Haiduc (2005); Dakternieks et al. (2006); Hill & Tiekink (2007); Hogarth et al. (2009)

Experimental top

The title complex was prepared by stirring the parent nickel(II) ethylxanthate (0.781g,0.0026 mol.) with 3-cyanopyridine(0.541g, 0.0052 mol.) in acetone(60 ml) for one hour. Green crystals of (I) were isolated by the slow evaporation of the resulting solution of the complex.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methylC).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are generated by the symmetry operation -x, 1-y, 1-z.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis.
Bis(O-ethyl dithiocarbonato-κ2S,S')bis(pyridine-3-carbonitrile- κN1)nickel(II) top
Crystal data top
[Ni(C3H5OS2)2(C6H4N2)2]F(000) = 524
Mr = 509.31Dx = 1.533 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10361 reflections
a = 6.7302 (2) Åθ = 3.6–29.0°
b = 18.8959 (5) ŵ = 1.28 mm1
c = 8.7242 (2) ÅT = 293 K
β = 95.916 (2)°Hexagonal plate, green
V = 1103.58 (5) Å30.3 × 0.3 × 0.1 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1930 independent reflections
Radiation source: fine-focus sealed tube1723 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.7°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 2222
Tmin = 0.728, Tmax = 1.000l = 1010
18847 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.7659P]
where P = (Fo2 + 2Fc2)/3
1930 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Ni(C3H5OS2)2(C6H4N2)2]V = 1103.58 (5) Å3
Mr = 509.31Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.7302 (2) ŵ = 1.28 mm1
b = 18.8959 (5) ÅT = 293 K
c = 8.7242 (2) Å0.3 × 0.3 × 0.1 mm
β = 95.916 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1930 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1723 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 1.000Rint = 0.036
18847 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.060Δρmax = 0.23 e Å3
S = 1.07Δρmin = 0.22 e Å3
1930 reflectionsAbsolute structure: ?
134 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.50000.02943 (12)
S10.33453 (8)0.46692 (3)0.60894 (6)0.03356 (14)
S20.03241 (8)0.54100 (3)0.23794 (7)0.03737 (15)
O10.3099 (2)0.42097 (8)0.89474 (17)0.0404 (4)
N10.0499 (3)0.60555 (9)0.5796 (2)0.0340 (4)
N20.3300 (4)0.76898 (12)0.8455 (3)0.0691 (7)
C20.0808 (3)0.63914 (11)0.6579 (3)0.0368 (5)
H20.19100.61430.68560.044*
C30.0591 (3)0.71000 (12)0.6999 (3)0.0401 (5)
C40.1050 (4)0.74716 (13)0.6592 (3)0.0484 (6)
H40.12220.79470.68460.058*
C50.2413 (4)0.71212 (13)0.5805 (3)0.0469 (6)
H50.35420.73540.55320.056*
C60.2086 (3)0.64182 (12)0.5425 (3)0.0383 (5)
H60.30140.61860.48850.046*
C70.2097 (4)0.74323 (13)0.7818 (3)0.0497 (6)
C80.2162 (3)0.44638 (11)0.7649 (2)0.0319 (5)
C90.5252 (3)0.41173 (13)0.9032 (3)0.0446 (6)
H9A0.58890.45610.88070.054*
H9B0.55830.37670.82850.054*
C100.5962 (4)0.38776 (14)1.0625 (3)0.0520 (6)
H10A0.55540.42131.13570.078*
H10B0.73920.38421.07320.078*
H10C0.53950.34231.08100.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0264 (2)0.0265 (2)0.0358 (2)0.00092 (15)0.00515 (15)0.00119 (16)
S10.0274 (3)0.0369 (3)0.0373 (3)0.0017 (2)0.0078 (2)0.0051 (2)
S20.0275 (3)0.0441 (3)0.0418 (3)0.0007 (2)0.0097 (2)0.0045 (2)
O10.0312 (8)0.0509 (10)0.0392 (9)0.0036 (7)0.0040 (7)0.0093 (7)
N10.0334 (10)0.0296 (9)0.0387 (10)0.0001 (8)0.0028 (8)0.0021 (8)
N20.0700 (17)0.0489 (14)0.0917 (19)0.0032 (12)0.0249 (14)0.0198 (13)
C20.0360 (12)0.0332 (12)0.0412 (13)0.0003 (9)0.0035 (10)0.0004 (10)
C30.0443 (13)0.0338 (12)0.0412 (13)0.0033 (10)0.0001 (10)0.0040 (10)
C40.0590 (16)0.0314 (12)0.0535 (15)0.0084 (11)0.0004 (12)0.0019 (11)
C50.0466 (14)0.0411 (13)0.0531 (15)0.0124 (11)0.0061 (11)0.0036 (12)
C60.0351 (12)0.0371 (12)0.0424 (13)0.0012 (9)0.0033 (10)0.0038 (10)
C70.0561 (16)0.0361 (13)0.0565 (16)0.0024 (12)0.0042 (13)0.0096 (12)
C80.0306 (11)0.0294 (11)0.0357 (11)0.0003 (9)0.0028 (9)0.0021 (9)
C90.0341 (12)0.0503 (14)0.0488 (14)0.0072 (10)0.0013 (10)0.0061 (11)
C100.0525 (15)0.0469 (15)0.0536 (15)0.0075 (12)0.0082 (12)0.0037 (12)
Geometric parameters (Å, °) top
Ni1—N12.1273 (17)C3—C71.442 (3)
Ni1—S12.4335 (5)C4—C51.372 (3)
Ni1—S22.4450 (6)C4—H40.9300
S1—C81.691 (2)C5—C61.381 (3)
S2—C8i1.688 (2)C5—H50.9300
O1—C81.328 (2)C6—H60.9300
O1—C91.454 (3)C9—C101.493 (3)
N1—C21.329 (3)C9—H9A0.9700
N1—C61.336 (3)C9—H9B0.9700
N2—C71.138 (3)C10—H10A0.9600
C2—C31.392 (3)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.385 (3)
N1i—Ni1—N1180.00 (3)C2—C3—C7119.3 (2)
N1i—Ni1—S189.73 (5)C5—C4—C3118.4 (2)
N1—Ni1—S190.27 (5)C5—C4—H4120.8
N1i—Ni1—S1i90.27 (5)C3—C4—H4120.8
N1—Ni1—S1i89.73 (5)C4—C5—C6119.1 (2)
S1—Ni1—S1i180.0C4—C5—H5120.5
N1i—Ni1—S2i88.96 (5)C6—C5—H5120.5
N1—Ni1—S2i91.04 (5)N1—C6—C5123.1 (2)
S1—Ni1—S2i73.831 (18)N1—C6—H6118.4
S1i—Ni1—S2i106.169 (18)C5—C6—H6118.4
N1i—Ni1—S291.04 (5)N2—C7—C3179.3 (3)
N1—Ni1—S288.96 (5)O1—C8—S2i116.53 (15)
S1—Ni1—S2106.169 (18)O1—C8—S1123.21 (15)
S1i—Ni1—S273.831 (18)S2i—C8—S1120.26 (12)
S2i—Ni1—S2180.0O1—C9—C10107.76 (19)
C8—S1—Ni183.10 (7)O1—C9—H9A110.2
C8i—S2—Ni182.80 (7)C10—C9—H9A110.2
C8—O1—C9118.02 (17)O1—C9—H9B110.2
C2—N1—C6117.86 (19)C10—C9—H9B110.2
C2—N1—Ni1121.65 (14)H9A—C9—H9B108.5
C6—N1—Ni1120.33 (15)C9—C10—H10A109.5
N1—C2—C3122.5 (2)C9—C10—H10B109.5
N1—C2—H2118.7H10A—C10—H10B109.5
C3—C2—H2118.7C9—C10—H10C109.5
C4—C3—C2119.0 (2)H10A—C10—H10C109.5
C4—C3—C7121.7 (2)H10B—C10—H10C109.5
N1i—Ni1—S1—C888.58 (9)C6—N1—C2—C30.8 (3)
N1—Ni1—S1—C891.42 (9)Ni1—N1—C2—C3174.57 (16)
S2i—Ni1—S1—C80.42 (7)N1—C2—C3—C40.1 (3)
S2—Ni1—S1—C8179.58 (7)N1—C2—C3—C7178.6 (2)
N1i—Ni1—S2—C8i90.39 (9)C2—C3—C4—C50.9 (4)
N1—Ni1—S2—C8i89.61 (9)C7—C3—C4—C5179.6 (2)
S1—Ni1—S2—C8i179.58 (7)C3—C4—C5—C61.2 (4)
S1i—Ni1—S2—C8i0.42 (7)C2—N1—C6—C50.5 (3)
S1—Ni1—N1—C2130.63 (16)Ni1—N1—C6—C5174.93 (18)
S1i—Ni1—N1—C249.37 (16)C4—C5—C6—N10.5 (4)
S2i—Ni1—N1—C256.80 (16)C9—O1—C8—S2i177.93 (16)
S2—Ni1—N1—C2123.20 (16)C9—O1—C8—S11.2 (3)
S1—Ni1—N1—C654.10 (16)Ni1—S1—C8—O1179.72 (18)
S1i—Ni1—N1—C6125.90 (16)Ni1—S1—C8—S2i0.67 (12)
S2i—Ni1—N1—C6127.93 (16)C8—O1—C9—C10176.01 (19)
S2—Ni1—N1—C652.07 (16)
Symmetry codes: (i) −x, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···S2ii0.972.853.455 (2)121
C10—H10C···N2iii0.962.653.595 (4)169
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+2.
Table 1
Selected geometric parameters (Å)
top
Ni1—N12.1273 (17)Ni1—S22.4450 (6)
Ni1—S12.4335 (5)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C9—H9A···S2i0.972.853.455 (2)121
C10—H10C···N2ii0.962.653.595 (4)169
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+2.
Acknowledgements top

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the UGC for research funding under research project F.No. 37–4154/2009 (J&K) (SR).

references
References top

Dakternieks, D., Duthie, A., Lai, C.-S. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m3006–m3008.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hill, D. D. & Tiekink, E. R. T. (2007). Acta Cryst. E63, m2808.

Hogarth, G., Rainford-Brent, E.-J. C.-R. C. R. & Richards, I. (2009). Inorg. Chim. Acta, 362, 1361–1364.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Tiekink, E. R. T. & Haiduc, I. (2005). Prog. Inorg. Chem. 54, 127–319.