supplementary materials


gk2440 scheme

Acta Cryst. (2012). E68, o201    [ doi:10.1107/S1600536811053694 ]

N-(Pyrrolidin-1-ylcarbothioyl)benzamide

A. A. Al-abbasi, M. I. Mohamed Tahir and M. B. Kassim

Abstract top

In the title compound, C12H14N2OS, the pyrrolidine ring adopts an envelope conformation with the C atom at the 3-position as the flap and makes a dihedral angle of 65.80 (9)° with the benzene ring. In the crystal, N-H...O hydrogen bonds join c-glide related molecules into chains extended along [001] that are further connected into (100) layers via C-H...O interactions.

Comment top

The title compound, I, is a derivative of a previously reported (2S)-1-(benzoylthiocarbamoyl)pyrrolidine-2-carboxylic acid (II) molecule (Ngah et al. 2006). In the crystal structure of I, the five-membered pyrrolidine ring has an envelope conformation with a maximum deviation from the mean plane of 0.238 (2)Å at C11. The benzene ring [C1/C2/C3/C4/C5/C6/C7] and the [(S1/N1/N2/C8/C9/C10] fragment are essentially planar and form dihedral angle of 79.03 (6)°.

The C=S and C=O bond lengths in I [1.6737 (17)Å and 1.2273 (19)Å, respectively] are comparable to those of II [1.662 (5)Å and 1.219 (5)Å]. In addition, the thiourea fragment in both compounds adopted a similar configuration with respect to the benzoyl and pyrrole fragments.

In the crystal, adjacent molecules are linked by N—H···O and C—H···O intermolecular interactions forming a two-dimensional polymeric structure parallel to (1 0 0) (Figure 2).

Related literature top

For related compounds, their structural parameters and chemical properties, see: Al-abbasi et al. (2010, 2011); Al-abbasi & Kassim (2011); Ngah et al. (2006).

Experimental top

The title compound was synthesized according to a previously reported compound (Al-abbasi et al., 2010) with some modifications. A solution of benzoyl chloride (10 mmol) in acetone was added slowly to an equimolar solution of ammonium thiocyanate in acetone. The reaction mixture was stirred at room temperature before adding piperidine (10 mmol) slowly and left stirring at room temperature for 4 h. The mixture was poured onto a water-ice and then filtered. The product was recrystallized to give a colourless crystal, suitable for X-ray crystallography (yield 81%; m.p. 407-408 K).

Refinement top

The hydrogen atom positions were calculated geometrically and refined in a riding model approximation with C–H bond lengths in the range 0.93–0.97 Å and N–H = 0.86 Å with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsods shown at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the c-axis with intermolecular hydrogen bonds drawn as dashed lines.
N-(Pyrrolidin-1-ylcarbothioyl)benzamide top
Crystal data top
C12H14N2OSF(000) = 496
Mr = 234.31Dx = 1.329 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3639 reflections
a = 10.3666 (4) Åθ = 4–71.2°
b = 14.6008 (5) ŵ = 2.29 mm1
c = 7.8240 (3) ÅT = 150 K
β = 98.446 (4)°Needle, colourless
V = 1171.40 (8) Å30.13 × 0.06 × 0.03 mm
Z = 4
Data collection top
Oxford Diffraction Gemini area-detector
diffractometer
2245 independent reflections
Radiation source: fine-focus sealed tube1958 reflections with I > 2σ(I)
graphiteRint = 0.024
Detector resolution: 0 pixels mm-1θmax = 71.2°, θmin = 4.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1717
Tmin = 0.870, Tmax = 0.934l = 99
8077 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.4389P]
where P = (Fo2 + 2Fc2)/3
2245 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H14N2OSV = 1171.40 (8) Å3
Mr = 234.31Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.3666 (4) ŵ = 2.29 mm1
b = 14.6008 (5) ÅT = 150 K
c = 7.8240 (3) Å0.13 × 0.06 × 0.03 mm
β = 98.446 (4)°
Data collection top
Oxford Diffraction Gemini area-detector
diffractometer
2245 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1958 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.934Rint = 0.024
8077 measured reflectionsθmax = 71.2°
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.32 e Å3
S = 1.03Δρmin = 0.27 e Å3
2245 reflectionsAbsolute structure: ?
145 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

(Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst., 105, 107.)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07552 (4)0.14802 (3)0.15309 (5)0.02646 (15)
O10.19040 (11)0.34576 (8)0.07829 (14)0.0257 (3)
N10.10339 (13)0.27023 (9)0.28912 (17)0.0225 (3)
H10.12010.24720.39110.027*
N20.08955 (12)0.32949 (10)0.14768 (16)0.0221 (3)
C10.30423 (16)0.36102 (11)0.5288 (2)0.0258 (4)
H1A0.22280.36030.56510.031*
C20.41496 (17)0.38288 (13)0.6445 (2)0.0313 (4)
H20.40740.39810.75800.038*
C30.53634 (17)0.38203 (13)0.5908 (3)0.0340 (4)
H30.61040.39560.66900.041*
C40.54804 (17)0.36105 (13)0.4211 (3)0.0326 (4)
H40.63000.36010.38610.039*
C50.43831 (16)0.34158 (12)0.3035 (2)0.0288 (4)
H50.44590.32950.18870.035*
C60.31615 (15)0.34018 (11)0.3581 (2)0.0235 (3)
C70.19885 (15)0.31944 (11)0.2285 (2)0.0221 (3)
C80.02146 (15)0.25496 (11)0.19383 (19)0.0215 (3)
C90.22292 (15)0.32549 (12)0.0516 (2)0.0256 (3)
H9A0.28070.29210.11620.031*
H9B0.22360.29650.06000.031*
C100.26313 (17)0.42580 (13)0.0310 (2)0.0309 (4)
H10A0.35560.43300.03510.037*
H10B0.24340.45030.07750.037*
C110.18200 (16)0.47345 (12)0.1844 (2)0.0283 (4)
H11A0.17260.53830.16210.034*
H11B0.22100.46590.28890.034*
C120.05187 (16)0.42453 (11)0.1987 (2)0.0257 (4)
H12A0.00280.45110.12110.031*
H12B0.00590.42680.31590.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0244 (2)0.0229 (2)0.0312 (2)0.00252 (14)0.00082 (16)0.00183 (14)
O10.0254 (6)0.0300 (6)0.0211 (6)0.0026 (4)0.0011 (4)0.0003 (4)
N10.0208 (6)0.0272 (7)0.0182 (6)0.0020 (5)0.0012 (5)0.0017 (5)
N20.0204 (6)0.0237 (7)0.0214 (7)0.0030 (5)0.0002 (5)0.0005 (5)
C10.0241 (8)0.0263 (8)0.0263 (8)0.0006 (6)0.0014 (7)0.0012 (6)
C20.0325 (9)0.0311 (9)0.0277 (9)0.0002 (7)0.0039 (7)0.0043 (7)
C30.0257 (9)0.0313 (9)0.0403 (10)0.0018 (7)0.0105 (7)0.0024 (7)
C40.0205 (8)0.0323 (9)0.0447 (11)0.0021 (7)0.0038 (7)0.0001 (8)
C50.0249 (8)0.0317 (9)0.0296 (9)0.0015 (6)0.0036 (7)0.0018 (7)
C60.0220 (8)0.0224 (8)0.0250 (8)0.0005 (6)0.0003 (6)0.0002 (6)
C70.0207 (7)0.0218 (8)0.0233 (8)0.0010 (6)0.0016 (6)0.0024 (6)
C80.0212 (8)0.0263 (8)0.0173 (7)0.0020 (6)0.0035 (6)0.0003 (6)
C90.0193 (8)0.0315 (9)0.0248 (8)0.0027 (6)0.0005 (6)0.0012 (7)
C100.0250 (8)0.0330 (10)0.0330 (9)0.0022 (7)0.0012 (7)0.0016 (7)
C110.0283 (8)0.0261 (9)0.0299 (8)0.0004 (6)0.0027 (7)0.0012 (7)
C120.0261 (8)0.0219 (8)0.0281 (8)0.0030 (6)0.0001 (6)0.0002 (6)
Geometric parameters (Å, °) top
S1—C81.6737 (16)C4—H40.9300
O1—C71.2275 (19)C5—C61.395 (2)
N1—C71.363 (2)C5—H50.9300
N1—C81.413 (2)C6—C71.496 (2)
N1—H10.8600C9—C101.525 (2)
N2—C81.318 (2)C9—H9A0.9700
N2—C91.4746 (19)C9—H9B0.9700
N2—C121.480 (2)C10—C111.528 (2)
C1—C21.391 (2)C10—H10A0.9700
C1—C61.392 (2)C10—H10B0.9700
C1—H1A0.9300C11—C121.516 (2)
C2—C31.384 (3)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.385 (3)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.384 (2)
C7—N1—C8123.71 (13)N2—C8—N1115.24 (14)
C7—N1—H1118.1N2—C8—S1124.55 (12)
C8—N1—H1118.1N1—C8—S1120.18 (12)
C8—N2—C9122.08 (14)N2—C9—C10103.72 (13)
C8—N2—C12126.18 (13)N2—C9—H9A111.0
C9—N2—C12111.41 (13)C10—C9—H9A111.0
C2—C1—C6119.56 (16)N2—C9—H9B111.0
C2—C1—H1A120.2C10—C9—H9B111.0
C6—C1—H1A120.2H9A—C9—H9B109.0
C3—C2—C1120.06 (17)C9—C10—C11104.10 (13)
C3—C2—H2120.0C9—C10—H10A110.9
C1—C2—H2120.0C11—C10—H10A110.9
C2—C3—C4120.29 (16)C9—C10—H10B110.9
C2—C3—H3119.9C11—C10—H10B110.9
C4—C3—H3119.9H10A—C10—H10B109.0
C5—C4—C3120.25 (17)C12—C11—C10102.97 (14)
C5—C4—H4119.9C12—C11—H11A111.2
C3—C4—H4119.9C10—C11—H11A111.2
C4—C5—C6119.58 (17)C12—C11—H11B111.2
C4—C5—H5120.2C10—C11—H11B111.2
C6—C5—H5120.2H11A—C11—H11B109.1
C1—C6—C5120.22 (15)N2—C12—C11103.01 (13)
C1—C6—C7121.10 (14)N2—C12—H12A111.2
C5—C6—C7118.64 (15)C11—C12—H12A111.2
O1—C7—N1123.00 (14)N2—C12—H12B111.2
O1—C7—C6121.50 (14)C11—C12—H12B111.2
N1—C7—C6115.49 (14)H12A—C12—H12B109.1
C6—C1—C2—C31.3 (3)C9—N2—C8—N1178.38 (13)
C1—C2—C3—C41.2 (3)C12—N2—C8—N15.5 (2)
C2—C3—C4—C50.6 (3)C9—N2—C8—S10.6 (2)
C3—C4—C5—C62.1 (3)C12—N2—C8—S1172.25 (12)
C2—C1—C6—C50.3 (3)C7—N1—C8—N259.7 (2)
C2—C1—C6—C7177.91 (15)C7—N1—C8—S1122.50 (15)
C4—C5—C6—C12.0 (3)C8—N2—C9—C10178.74 (14)
C4—C5—C6—C7179.69 (15)C12—N2—C9—C104.89 (17)
C8—N1—C7—O18.9 (2)N2—C9—C10—C1126.57 (16)
C8—N1—C7—C6170.83 (14)C9—C10—C11—C1238.33 (17)
C1—C6—C7—O1142.08 (16)C8—N2—C12—C11154.72 (15)
C5—C6—C7—O135.6 (2)C9—N2—C12—C1118.82 (17)
C1—C6—C7—N137.7 (2)C10—C11—C12—N234.56 (16)
C5—C6—C7—N1144.65 (16)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.052.8637 (17)157
C11—H11A···O1ii0.972.523.339 (2)142
C12—H12A···O10.972.543.035 (2)112
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y+1, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.052.8637 (17)157
C11—H11A···O1ii0.972.523.339 (2)142
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y+1, −z.
Acknowledgements top

The authors thank Universiti Kebangsaan Malaysia for providing facilities and a grant (UKM-OUP-TK-16–73/2011 and UKM-PTS-016–2010) and the Libyan Government for providing a scholarship to AA.

references
References top

Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.

Al-abbasi, A. A., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1891.

Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.

Ngah, N., Kassim, M. B. & Yamin, B. M. (2006). Acta Cryst. E62, o4501–o4502.

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.