organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(hy­dr­oxy­meth­yl)methanaminium tri­fluoro­acetate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 24 November 2011; accepted 3 December 2011; online 10 December 2011)

In the crystal structure of the title salt, C4H12NO3+·C2F3O2, N—H⋯O and O—H⋯O hydrogen bonds link the ions, forming a complex three-dimensional network.

Related literature

For background to ferroelectric complexes, see: Fu et al. (2011[Fu, D. W., Zhang, W., Cai, H. L., Zhang, Y., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2011). J. Am. Chem. Soc. 133, 12780-12786.]); Zhang et al. (2010[Zhang, W., Chen, L. Z., Gou, M., Li, Y. H., Fu, D. W. & Xiong, R. G. (2010). Cryst. Growth Des. 10, 1025-1027.]). For a related structure, see: Rudman et al. (1983[Rudman, R., Lippman, R., Sake Gowda, D. S. & Eilerman, D. (1983). Acta Cryst. C39, 1267-1271.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12NO3+·C2F3O2

  • Mr = 235.17

  • Monoclinic, P 21 /c

  • a = 8.5137 (17) Å

  • b = 6.1210 (12) Å

  • c = 18.283 (4) Å

  • β = 99.34 (3)°

  • V = 940.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.971

  • 9320 measured reflections

  • 2148 independent reflections

  • 1755 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections every 180 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.155

  • S = 1.02

  • 2148 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.86 2.644 (2) 159
O2—H2⋯O5 0.82 1.86 2.673 (3) 170
O3—H3⋯O4ii 0.82 1.87 2.677 (3) 170
N1—H1A⋯O4iii 0.89 1.91 2.795 (3) 171
N1—H1B⋯O1iv 0.89 1.98 2.854 (2) 168
N1—H1C⋯O3v 0.89 2.02 2.899 (2) 169
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to crystals containing organic ions and inorganic ions due to the possibility of tuning their special structural features and their potential ferroelectrics properties (Fu et al., 2011; Zhang et al., 2010.).

The compound (C4H12O3N)+(C2F3O2)- has an asymmetric unit that consists of one tris(hydroxymethyl)methanaminium cation and one trifluoroacetate anion (Fig 1). N-H···O and O-H···O hydrogen bonds form a complex three-dimensional network, (Fig 2). The trifluoromethyl group is quite mobile, but examination of a difference map in the plane of the fluorine atoms does show that the fluorine atoms exist as three distinct atoms.

For structure of the related tris(hydroxymethyl)methanaminium hydrogenhalides seen (Rudman et al., 1983).

Related literature top

For background to ferroelectric complexes, see: Fu et al. (2011); Zhang et al. ( 2010). For a related structure, see: Rudman et al. (1983).

Experimental top

1.21 g (0.01 mol) of tris(hydroxymethyl)methanaminium was firstly dissolved in 30 ml of ethanol, to which 1.14 g (0.01 mol) of trifluoroacetic acid was added at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 3 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or that there may be no distinct phase transition occurring within the measured temperatur (below the melting point).

Refinement top

H atoms were placed in calculated positions (N—H = 0.89Å; O—H = 0.82Å; C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3, N and O )] and allowed to ride.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b axis. Intermolecular interactions are shown as dashed lines.
Tris(hydroxymethyl)methanaminium trifluoroacetate top
Crystal data top
C4H12NO3+·C2F3O2F(000) = 488
Mr = 235.17Dx = 1.661 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1755 reflections
a = 8.5137 (17) Åθ = 3.4°
b = 6.1210 (12) ŵ = 0.18 mm1
c = 18.283 (4) ÅT = 293 K
β = 99.34 (3)°Block, colourless
V = 940.1 (3) Å30.36 × 0.32 × 0.28 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1755 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
CCD_Profile_fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.963, Tmax = 0.971l = 2323
9320 measured reflections3 standard reflections every 180 reflections
2148 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0616P)2 + 1.3289P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2148 reflectionsΔρmax = 0.62 e Å3
137 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (5)
Crystal data top
C4H12NO3+·C2F3O2V = 940.1 (3) Å3
Mr = 235.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5137 (17) ŵ = 0.18 mm1
b = 6.1210 (12) ÅT = 293 K
c = 18.283 (4) Å0.36 × 0.32 × 0.28 mm
β = 99.34 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1755 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.041
Tmin = 0.963, Tmax = 0.9713 standard reflections every 180 reflections
9320 measured reflections intensity decay: none
2148 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.02Δρmax = 0.62 e Å3
2148 reflectionsΔρmin = 0.57 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44769 (19)0.4524 (3)0.28724 (10)0.0314 (4)
H10.40520.33970.29840.047*
O20.3706 (2)1.0901 (3)0.35171 (10)0.0335 (4)
H20.45521.07240.37970.050*
O30.01510 (17)0.6467 (3)0.28917 (9)0.0278 (4)
H30.04960.74270.31360.042*
N10.2497 (2)0.8010 (3)0.23954 (10)0.0228 (4)
H1A0.23200.68480.21010.027*
H1B0.33860.86740.23180.027*
H1C0.16820.89310.22970.027*
C10.2672 (2)0.7304 (3)0.31806 (12)0.0222 (5)
C20.1335 (3)0.5753 (4)0.32623 (13)0.0262 (5)
H2A0.15690.43340.30690.031*
H2B0.12800.55780.37850.031*
C30.2617 (3)0.9309 (4)0.36617 (13)0.0283 (5)
H3A0.15510.99190.35720.034*
H3B0.28540.88880.41790.034*
C40.4261 (3)0.6174 (4)0.33775 (13)0.0274 (5)
H4A0.51050.72450.33900.033*
H4B0.43400.55440.38690.033*
F10.9653 (4)0.7549 (5)0.4913 (2)0.1536 (18)
F20.8144 (3)0.5578 (3)0.42180 (12)0.0720 (7)
F30.7347 (5)0.7020 (5)0.50960 (16)0.1421 (17)
O40.8379 (2)0.9534 (3)0.35771 (10)0.0412 (5)
O50.6631 (2)1.0433 (4)0.42917 (12)0.0490 (6)
C50.8217 (4)0.7380 (5)0.45986 (15)0.0476 (8)
C60.7677 (3)0.9331 (4)0.41107 (13)0.0305 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0273 (8)0.0234 (8)0.0455 (10)0.0040 (7)0.0114 (7)0.0019 (7)
O20.0306 (9)0.0218 (8)0.0464 (10)0.0048 (7)0.0010 (7)0.0019 (7)
O30.0198 (8)0.0282 (8)0.0354 (9)0.0011 (6)0.0050 (6)0.0026 (7)
N10.0198 (9)0.0204 (9)0.0285 (10)0.0003 (7)0.0049 (7)0.0001 (7)
C10.0205 (10)0.0197 (10)0.0265 (11)0.0002 (8)0.0039 (8)0.0004 (8)
C20.0219 (10)0.0230 (11)0.0342 (12)0.0021 (9)0.0055 (9)0.0031 (9)
C30.0304 (11)0.0226 (11)0.0324 (12)0.0016 (9)0.0063 (9)0.0033 (9)
C40.0225 (10)0.0233 (11)0.0353 (12)0.0018 (9)0.0011 (9)0.0000 (9)
F10.140 (3)0.0813 (19)0.190 (3)0.0144 (18)0.122 (3)0.057 (2)
F20.1160 (18)0.0335 (10)0.0696 (13)0.0116 (11)0.0240 (12)0.0072 (9)
F30.260 (5)0.099 (2)0.099 (2)0.064 (3)0.124 (3)0.0499 (17)
O40.0514 (11)0.0379 (10)0.0361 (10)0.0140 (9)0.0126 (8)0.0091 (8)
O50.0337 (10)0.0566 (13)0.0558 (13)0.0119 (9)0.0047 (9)0.0129 (10)
C50.072 (2)0.0389 (16)0.0323 (14)0.0066 (15)0.0093 (14)0.0041 (12)
C60.0277 (11)0.0311 (13)0.0311 (12)0.0014 (10)0.0006 (9)0.0031 (10)
Geometric parameters (Å, º) top
O1—C41.400 (3)C2—H2A0.9700
O1—H10.8197C2—H2B0.9700
O2—C31.400 (3)C3—H3A0.9700
O2—H20.8202C3—H3B0.9700
O3—C21.405 (3)C4—H4A0.9700
O3—H30.8207C4—H4B0.9700
N1—C11.483 (3)F1—C51.268 (4)
N1—H1A0.8904F2—C51.300 (4)
N1—H1B0.8906F3—C51.282 (4)
N1—H1C0.8895O4—C61.230 (3)
C1—C21.508 (3)O5—C61.206 (3)
C1—C41.510 (3)C5—C61.517 (4)
C1—C31.515 (3)
C4—O1—H1109.4O2—C3—C1111.74 (19)
C3—O2—H2109.4O2—C3—H3A109.3
C2—O3—H3109.5C1—C3—H3A109.3
C1—N1—H1A109.5O2—C3—H3B109.3
C1—N1—H1B109.4C1—C3—H3B109.3
H1A—N1—H1B109.4H3A—C3—H3B107.9
C1—N1—H1C109.5O1—C4—C1112.42 (18)
H1A—N1—H1C109.5O1—C4—H4A109.1
H1B—N1—H1C109.5C1—C4—H4A109.1
N1—C1—C2108.68 (18)O1—C4—H4B109.1
N1—C1—C4108.04 (18)C1—C4—H4B109.1
C2—C1—C4110.46 (18)H4A—C4—H4B107.9
N1—C1—C3108.54 (18)F1—C5—F3108.6 (4)
C2—C1—C3110.94 (18)F1—C5—F2105.7 (3)
C4—C1—C3110.10 (18)F3—C5—F2104.5 (3)
O3—C2—C1113.05 (18)F1—C5—C6112.3 (3)
O3—C2—H2A109.0F3—C5—C6113.4 (3)
C1—C2—H2A109.0F2—C5—C6111.7 (2)
O3—C2—H2B109.0O5—C6—O4129.6 (3)
C1—C2—H2B109.0O5—C6—C5116.5 (2)
H2A—C2—H2B107.8O4—C6—C5113.9 (2)
N1—C1—C2—O344.3 (2)C3—C1—C4—O1170.24 (18)
C4—C1—C2—O3162.62 (19)F1—C5—C6—O5115.9 (4)
C3—C1—C2—O375.0 (2)F3—C5—C6—O57.7 (4)
N1—C1—C3—O252.4 (2)F2—C5—C6—O5125.5 (3)
C2—C1—C3—O2171.71 (19)F1—C5—C6—O464.8 (4)
C4—C1—C3—O265.7 (2)F3—C5—C6—O4171.6 (3)
N1—C1—C4—O151.9 (2)F2—C5—C6—O453.8 (4)
C2—C1—C4—O166.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.862.644 (2)159
O2—H2···O50.821.862.673 (3)170
O3—H3···O4ii0.821.872.677 (3)170
N1—H1A···O4iii0.891.912.795 (3)171
N1—H1B···O1iv0.891.982.854 (2)168
N1—H1C···O3v0.892.022.899 (2)169
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H12NO3+·C2F3O2
Mr235.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5137 (17), 6.1210 (12), 18.283 (4)
β (°) 99.34 (3)
V3)940.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
9320, 2148, 1755
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.155, 1.02
No. of reflections2148
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.57

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.862.644 (2)159.1
O2—H2···O50.821.862.673 (3)170.2
O3—H3···O4ii0.821.872.677 (3)169.8
N1—H1A···O4iii0.891.912.795 (3)171.2
N1—H1B···O1iv0.891.982.854 (2)168.1
N1—H1C···O3v0.892.022.899 (2)169.1
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationFu, D. W., Zhang, W., Cai, H. L., Zhang, Y., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2011). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRudman, R., Lippman, R., Sake Gowda, D. S. & Eilerman, D. (1983). Acta Cryst. C39, 1267–1271.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Gou, M., Li, Y. H., Fu, D. W. & Xiong, R. G. (2010). Cryst. Growth Des. 10, 1025–1027.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds