supplementary materials


hb6507 scheme

Acta Cryst. (2012). E68, o69    [ doi:10.1107/S1600536811052172 ]

Dihydroallocryptopine

W. Sun, Y. Qin, Z. Hou, Y. Yao and L. Zhou

Abstract top

In the title compound [systematic name: 7,8-dimethoxy-11-methyl-17,19-dioxa-11-azatetracyclo[12.7.0.04,9.016,20]henicosa-1(21),4,6,8,14,16 (20)-hexaen-2-ol], C21H25NO5, the benzene rings are inclined at a dihedral angle of 23.16 (5)°. One of the methoxy C atoms is close to coplanar with its attached ring [deviation = 0.129 (3) Å], whereas the other is orientated away from the ring [deviation = -1.124 (2) Å]. The 10-membered ring is highly puckered, and the OH and CH3 substituents project to the same side of the ring. In the crystal, O-H...O hydrogen bonds link the molecules into [010] chains and C-H...O and C-H...[pi] interactions consolidate the packing.

Comment top

The allocryptopine derivatives have recently attracted great attention due to their antifungal activity (Morteza et al. 2003), antibacterial activity (Yan et al. 2009), analgesic effect (Capasso et al. 1997), anti-dementia (Jeong et al. 2009; Zhao et al. 2008), and so on. With the interests in the synthesis of allocryptopine derivatives with biological activity, we report here the synthesis and crystal structure of the title compound, (I).

As shown in Fig. 1, the molecule of the title compound is characterized by the presence of a ten-membered ring (hexahydrodibenzo[c,g]azecine) with a methylated tertiary nitrogen atom and a hydroxyl group fused to two aryl moieties. In general, the title compound have two oxygenated substituents on the benzene ring and two methoxyl on the other benzene ring. Benzene rings C1/C2/C3/C4/C5/C6 and C10/C11/C16/C17/C18/C19 are inclined with respect to one another with a dihedral angle of 23.16 (5)°.

In the crystal structure, two adjacent molecules are linked by weak intermolecular O—H···O or C—H···O hydrogen bond into a one-dimension chain along b axis. These chains are further connected by C—H···π interaction into two-dimension sheets.

Related literature top

For the synthesis of the title compound, see: Wada et al. (2007). For the biological activity of allocryptopine derivatives, see: Morteza et al. (2003); Yan et al. (2009); Capasso et al. (1997); Jeong et al. (2009); Zhao et al. (2008). For related literature [on what subject?], see: Valpuesta et al. (2006).

Experimental top

The title compound was synthesized according to the literature procedure (Wada et al. 2007), and colourless blocks of (I) were obtained from a solution in methanol by slow evaporation at room temperature.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 (aromatic CH), or 0.97 Å (methylene CH2), or 0.96Å (methyl CH3), and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Uceq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (50% displacement ellipsoids).
[Figure 2] Fig. 2. The two-dimension sheet structure of the title compound.
7,8-dimethoxy-11-methyl-17,19-dioxa-11- azatetracyclo[12.7.0.04,9.016,20]henicosa-1(21),4,6,8,14,16 (20)-hexaen-2-ol top
Crystal data top
C21H25NO5F(000) = 792
Mr = 371.42Dx = 1.261 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.2557 (19) ÅCell parameters from 3665 reflections
b = 9.3705 (13) Åθ = 2.6–22.6°
c = 15.278 (2) ŵ = 0.09 mm1
β = 106.601 (2)°T = 296 K
V = 1955.8 (5) Å3Block, colourless
Z = 40.45 × 0.24 × 0.21 mm
Data collection top
Bruker SMART APEX II CCD
diffractometer
3646 independent reflections
Radiation source: fine-focus sealed tube2766 reflections with I > 2σ(I)
graphiteRint = 0.026
phi and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.961, Tmax = 0.981k = 1111
14189 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.4075P]
where P = (Fo2 + 2Fc2)/3
3646 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H25NO5V = 1955.8 (5) Å3
Mr = 371.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2557 (19) ŵ = 0.09 mm1
b = 9.3705 (13) ÅT = 296 K
c = 15.278 (2) Å0.45 × 0.24 × 0.21 mm
β = 106.601 (2)°
Data collection top
Bruker SMART APEX II CCD
diffractometer
3646 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2766 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.981Rint = 0.026
14189 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.18 e Å3
S = 1.02Δρmin = 0.21 e Å3
3646 reflectionsAbsolute structure: ?
248 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27622 (11)0.13752 (17)0.24521 (10)0.0402 (4)
C20.32459 (11)0.17612 (18)0.18061 (11)0.0460 (4)
H20.29540.16120.11860.055*
C30.41532 (12)0.2359 (2)0.21064 (13)0.0528 (4)
C40.46009 (13)0.2568 (2)0.30202 (14)0.0592 (5)
C50.41615 (12)0.2188 (2)0.36684 (13)0.0588 (5)
H50.44780.23290.42850.071*
C60.32187 (11)0.15767 (19)0.33900 (11)0.0464 (4)
C70.55723 (15)0.3447 (3)0.22467 (16)0.0776 (6)
H7A0.61860.31060.21680.093*
H7B0.55390.44710.21510.093*
C80.17251 (11)0.08232 (16)0.20842 (9)0.0375 (3)
H80.15450.02800.25600.045*
C90.10207 (11)0.20855 (17)0.17812 (11)0.0410 (4)
H9A0.12340.28500.22210.049*
H9B0.10790.24290.12000.049*
C100.00464 (11)0.17974 (16)0.16778 (10)0.0381 (3)
C110.04578 (11)0.20517 (16)0.23982 (10)0.0381 (3)
C120.01951 (11)0.25595 (18)0.33146 (11)0.0444 (4)
H12A0.04770.34790.32430.053*
H12B0.01890.26700.37420.053*
C130.19042 (11)0.2073 (2)0.42234 (11)0.0507 (4)
H13A0.19020.20990.48570.061*
H13B0.19880.30420.40350.061*
C140.27663 (12)0.1155 (2)0.41377 (11)0.0530 (5)
H14A0.32740.11830.47170.064*
H14B0.25440.01740.40340.064*
C150.06335 (14)0.0326 (2)0.40923 (13)0.0650 (5)
H15A0.11370.03880.42550.098*
H15B0.00590.00730.36720.098*
H15C0.04780.06460.46310.098*
C160.14540 (11)0.18373 (17)0.22552 (10)0.0410 (4)
C170.20575 (11)0.13956 (18)0.14017 (11)0.0452 (4)
C180.16472 (12)0.11260 (18)0.07058 (11)0.0463 (4)
H180.20360.08090.01420.056*
C190.06541 (12)0.13279 (17)0.08482 (10)0.0430 (4)
H190.03850.11430.03720.052*
C200.22408 (15)0.0958 (2)0.33403 (14)0.0674 (5)
H20A0.26900.04190.28680.101*
H20B0.25690.12930.37690.101*
H20C0.17000.03610.36500.101*
C210.36808 (14)0.0889 (3)0.04815 (15)0.0854 (7)
H21A0.36460.15870.00320.128*
H21B0.43370.08460.05290.128*
H21C0.34980.00280.03030.128*
N10.09746 (9)0.15187 (14)0.36674 (8)0.0403 (3)
O10.55278 (10)0.3128 (2)0.31403 (11)0.0870 (5)
O20.47711 (10)0.27719 (17)0.16005 (10)0.0764 (4)
O30.16204 (8)0.00602 (12)0.12969 (7)0.0458 (3)
H30.17350.08920.14580.069*
O40.30345 (8)0.12764 (16)0.13363 (8)0.0642 (4)
O50.18857 (8)0.21548 (12)0.29420 (7)0.0497 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0378 (8)0.0418 (9)0.0418 (9)0.0010 (7)0.0127 (7)0.0015 (7)
C20.0419 (9)0.0530 (10)0.0431 (9)0.0002 (7)0.0121 (7)0.0017 (7)
C30.0446 (10)0.0587 (11)0.0594 (11)0.0037 (8)0.0216 (8)0.0003 (9)
C40.0407 (9)0.0668 (12)0.0694 (12)0.0113 (9)0.0147 (9)0.0111 (10)
C50.0432 (10)0.0793 (14)0.0511 (10)0.0077 (9)0.0089 (8)0.0145 (9)
C60.0395 (9)0.0553 (10)0.0428 (9)0.0013 (7)0.0091 (7)0.0051 (8)
C70.0530 (12)0.0853 (16)0.0995 (17)0.0185 (11)0.0298 (12)0.0081 (13)
C80.0417 (8)0.0422 (9)0.0301 (7)0.0026 (7)0.0125 (6)0.0025 (6)
C90.0429 (9)0.0425 (9)0.0389 (8)0.0011 (7)0.0140 (7)0.0029 (7)
C100.0408 (8)0.0357 (8)0.0375 (8)0.0027 (6)0.0111 (6)0.0027 (6)
C110.0407 (8)0.0346 (8)0.0381 (8)0.0007 (6)0.0095 (7)0.0015 (6)
C120.0430 (9)0.0473 (9)0.0436 (9)0.0029 (7)0.0136 (7)0.0117 (7)
C130.0456 (9)0.0690 (12)0.0369 (8)0.0084 (8)0.0108 (7)0.0137 (8)
C140.0440 (9)0.0768 (13)0.0347 (8)0.0011 (9)0.0057 (7)0.0011 (8)
C150.0613 (11)0.0714 (13)0.0612 (12)0.0116 (10)0.0156 (9)0.0148 (10)
C160.0408 (8)0.0424 (9)0.0413 (9)0.0025 (7)0.0142 (7)0.0021 (7)
C170.0376 (9)0.0493 (10)0.0456 (9)0.0016 (7)0.0069 (7)0.0019 (7)
C180.0458 (9)0.0531 (10)0.0350 (8)0.0012 (8)0.0036 (7)0.0040 (7)
C190.0478 (9)0.0462 (9)0.0357 (8)0.0048 (7)0.0130 (7)0.0005 (7)
C200.0694 (13)0.0749 (14)0.0672 (12)0.0005 (11)0.0347 (10)0.0095 (10)
C210.0436 (11)0.128 (2)0.0719 (14)0.0027 (12)0.0039 (10)0.0165 (14)
N10.0398 (7)0.0478 (8)0.0326 (6)0.0057 (6)0.0095 (5)0.0040 (6)
O10.0522 (8)0.1244 (14)0.0852 (11)0.0369 (9)0.0208 (7)0.0178 (10)
O20.0563 (8)0.1040 (12)0.0760 (9)0.0229 (8)0.0303 (7)0.0018 (8)
O30.0541 (7)0.0482 (7)0.0363 (6)0.0031 (6)0.0150 (5)0.0074 (5)
O40.0363 (6)0.0958 (10)0.0561 (7)0.0040 (6)0.0062 (5)0.0098 (7)
O50.0496 (7)0.0551 (7)0.0499 (7)0.0007 (5)0.0229 (5)0.0060 (5)
Geometric parameters (Å, °) top
C1—C21.403 (2)C12—H12B0.9700
C1—C61.407 (2)C13—N11.4506 (19)
C1—C81.515 (2)C13—C141.536 (2)
C2—C31.363 (2)C13—H13A0.9700
C2—H20.9300C13—H13B0.9700
C3—C41.373 (3)C14—H14A0.9700
C3—O21.383 (2)C14—H14B0.9700
C4—C51.362 (3)C15—N11.445 (2)
C4—O11.384 (2)C15—H15A0.9600
C5—C61.410 (2)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C141.516 (2)C16—O51.3920 (18)
C7—O11.417 (3)C16—C171.404 (2)
C7—O21.427 (2)C17—O41.3720 (19)
C7—H7A0.9700C17—C181.375 (2)
C7—H7B0.9700C18—C191.383 (2)
C8—O31.4323 (17)C18—H180.9300
C8—C91.535 (2)C19—H190.9300
C8—H80.9800C20—O51.435 (2)
C9—C101.508 (2)C20—H20A0.9600
C9—H9A0.9700C20—H20B0.9600
C9—H9B0.9700C20—H20C0.9600
C10—C191.387 (2)C21—O41.414 (2)
C10—C111.407 (2)C21—H21A0.9600
C11—C161.388 (2)C21—H21B0.9600
C11—C121.519 (2)C21—H21C0.9600
C12—N11.461 (2)O3—H30.8200
C12—H12A0.9700
C2—C1—C6120.30 (14)N1—C13—H13A109.3
C2—C1—C8116.79 (13)C14—C13—H13A109.3
C6—C1—C8122.82 (13)N1—C13—H13B109.3
C3—C2—C1118.61 (15)C14—C13—H13B109.3
C3—C2—H2120.7H13A—C13—H13B108.0
C1—C2—H2120.7C6—C14—C13116.17 (15)
C2—C3—C4121.44 (16)C6—C14—H14A108.2
C2—C3—O2128.43 (17)C13—C14—H14A108.2
C4—C3—O2110.06 (15)C6—C14—H14B108.2
C5—C4—C3121.68 (16)C13—C14—H14B108.2
C5—C4—O1128.52 (18)H14A—C14—H14B107.4
C3—C4—O1109.74 (17)N1—C15—H15A109.5
C4—C5—C6118.93 (16)N1—C15—H15B109.5
C4—C5—H5120.5H15A—C15—H15B109.5
C6—C5—H5120.5N1—C15—H15C109.5
C1—C6—C5119.03 (15)H15A—C15—H15C109.5
C1—C6—C14124.04 (14)H15B—C15—H15C109.5
C5—C6—C14116.92 (14)C11—C16—O5120.21 (13)
O1—C7—O2109.03 (15)C11—C16—C17121.11 (14)
O1—C7—H7A109.9O5—C16—C17118.53 (13)
O2—C7—H7A109.9O4—C17—C18125.15 (14)
O1—C7—H7B109.9O4—C17—C16115.57 (14)
O2—C7—H7B109.9C18—C17—C16119.28 (14)
H7A—C7—H7B108.3C17—C18—C19119.72 (14)
O3—C8—C1111.43 (12)C17—C18—H18120.1
O3—C8—C9106.85 (12)C19—C18—H18120.1
C1—C8—C9109.50 (13)C18—C19—C10122.10 (14)
O3—C8—H8109.7C18—C19—H19118.9
C1—C8—H8109.7C10—C19—H19118.9
C9—C8—H8109.7O5—C20—H20A109.5
C10—C9—C8116.55 (13)O5—C20—H20B109.5
C10—C9—H9A108.2H20A—C20—H20B109.5
C8—C9—H9A108.2O5—C20—H20C109.5
C10—C9—H9B108.2H20A—C20—H20C109.5
C8—C9—H9B108.2H20B—C20—H20C109.5
H9A—C9—H9B107.3O4—C21—H21A109.5
C19—C10—C11118.51 (14)O4—C21—H21B109.5
C19—C10—C9120.04 (13)H21A—C21—H21B109.5
C11—C10—C9121.40 (13)O4—C21—H21C109.5
C16—C11—C10119.24 (13)H21A—C21—H21C109.5
C16—C11—C12121.34 (13)H21B—C21—H21C109.5
C10—C11—C12119.42 (13)C15—N1—C13112.48 (14)
N1—C12—C11109.40 (12)C15—N1—C12111.35 (14)
N1—C12—H12A109.8C13—N1—C12116.64 (13)
C11—C12—H12A109.8C4—O1—C7104.83 (15)
N1—C12—H12B109.8C3—O2—C7104.43 (15)
C11—C12—H12B109.8C8—O3—H3109.5
H12A—C12—H12B108.2C17—O4—C21117.92 (14)
N1—C13—C14111.64 (14)C16—O5—C20115.97 (13)
C6—C1—C2—C31.3 (2)C1—C6—C14—C1371.7 (2)
C8—C1—C2—C3175.33 (15)C5—C6—C14—C13109.25 (18)
C1—C2—C3—C40.9 (3)N1—C13—C14—C690.26 (18)
C1—C2—C3—O2177.59 (17)C10—C11—C16—O5176.56 (13)
C2—C3—C4—C50.1 (3)C12—C11—C16—O53.2 (2)
O2—C3—C4—C5177.16 (18)C10—C11—C16—C171.1 (2)
C2—C3—C4—O1177.33 (17)C12—C11—C16—C17178.70 (15)
O2—C3—C4—O10.1 (2)C11—C16—C17—O4177.48 (14)
C3—C4—C5—C60.6 (3)O5—C16—C17—O41.9 (2)
O1—C4—C5—C6177.3 (2)C11—C16—C17—C182.2 (2)
C2—C1—C6—C50.8 (3)O5—C16—C17—C18177.73 (14)
C8—C1—C6—C5175.64 (15)O4—C17—C18—C19177.98 (16)
C2—C1—C6—C14178.21 (16)C16—C17—C18—C191.7 (2)
C8—C1—C6—C145.3 (3)C17—C18—C19—C100.1 (3)
C4—C5—C6—C10.2 (3)C11—C10—C19—C181.0 (2)
C4—C5—C6—C14179.25 (17)C9—C10—C19—C18176.33 (15)
C2—C1—C8—O338.31 (19)C14—C13—N1—C1579.54 (18)
C6—C1—C8—O3145.11 (15)C14—C13—N1—C12150.04 (14)
C2—C1—C8—C979.68 (17)C11—C12—N1—C1580.48 (17)
C6—C1—C8—C996.90 (17)C11—C12—N1—C13148.58 (13)
O3—C8—C9—C1077.80 (16)C5—C4—O1—C7174.7 (2)
C1—C8—C9—C10161.39 (13)C3—C4—O1—C78.3 (2)
C8—C9—C10—C1989.37 (18)O2—C7—O1—C413.5 (2)
C8—C9—C10—C1193.35 (17)C2—C3—O2—C7174.7 (2)
C19—C10—C11—C160.5 (2)C4—C3—O2—C78.3 (2)
C9—C10—C11—C16176.82 (14)O1—C7—O2—C313.6 (2)
C19—C10—C11—C12179.70 (14)C18—C17—O4—C212.1 (3)
C9—C10—C11—C123.0 (2)C16—C17—O4—C21177.58 (18)
C16—C11—C12—N1121.81 (15)C11—C16—O5—C20112.30 (17)
C10—C11—C12—N158.39 (19)C17—C16—O5—C2072.12 (19)
Hydrogen-bond geometry (Å, °) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.822.032.8380 (16)168
C7—H7A···O4ii0.972.573.405 (3)144
C18—H18···O3iii0.932.533.229 (2)132
C7—H7B···Cg2iv0.972.573.464 (3)153
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) −x, −y, −z; (iv) −x+1, y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.822.032.8380 (16)168
C7—H7A···O4ii0.972.573.405 (3)144
C18—H18···O3iii0.932.533.229 (2)132
C7—H7B···Cg2iv0.972.573.464 (3)153
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) −x, −y, −z; (iv) −x+1, y+1/2, −z+1/2.
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (NNSF; No. 31172365; 31101469).

references
References top

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Capasso, A., Piacente, S. & Pizza, C. (1997). Planta Med. 63, 326–328.

Jeong, E. J., Ma, C. J., Lee, K. Y., Kim, S. H., Sung, S. H. & Kim, Y. C. (2009). J. Ethnopharmacol. 121, 98–105.

Morteza, K., Amin, G., Shidfar, M. R., Hadizadeh, H. & Shafiee, A. (2003). Fitoterapia, 74, 493–496.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Valpuesta, M., Diaz, A., Suau, R. & Torres, G. (2006). Eur. J. Org. Chem. pp. 964–971.

Wada, Y., Kaga, H., Uchiito, S., Kumazawa, E., Tomiki, M., Onozaki, Y., Kurono, N., Tokuda, M., Ohkuma, T. & Orit, K. (2007). J. Org. Chem. 72, 7301–7306.

Yan, M., Sun, J. H., Lu, Z. Q., Chen, G. T., Guan, S. H., Liu, X., Jiang, B. H., Ye, M. & Guo, D. A. (2009). J. Chromatogr. A, 1216, 2045–2062.

Zhao, G., Jiang, Z. H., Zheng, X. W., Zang, S. Y. & Guo, L. H. (2008). Pharmacol. Biochem. Behav. 90, 363–371.