supplementary materials


hb6549 scheme

Acta Cryst. (2012). E68, o188    [ doi:10.1107/S1600536811053359 ]

6-Chloroquinolin-2(1H)-one

C.-G. Zhang and Y.-H. Luo

Abstract top

In the title compound, C9H6ClNO, the Cl atom deviates by 0.142 (1) Å from the quinoline ring mean plane (r.m.s. deviation = 0.013 Å). In the crystal, N-H...O hydrogen bonds link the molecules into [010] C(4) chains. Aromatic [pi]-[pi] stacking interactions [shortest centroid...centroid distance = 3.685 (3) Å] are also observed.

Related literature top

For background to quinoline derivatives as pharmaceuticals, see: Luo et al. (2011).

Experimental top

The title compound was purchased from ChemFuture PharmaTech, Ltd (Nanjing, Jiangsu). Pink prisms were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms attached to C atoms and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (CH) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing view down the a axis showing hydrogen bonds as dashed lines.
6-Chloroquinolin-2(1H)-one top
Crystal data top
C9H6ClNOF(000) = 736
Mr = 179.60Dx = 1.548 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1357 reflections
a = 24.951 (19) Åθ = 1.6–25.0°
b = 7.733 (6) ŵ = 0.44 mm1
c = 7.988 (6) ÅT = 296 K
V = 1541 (2) Å3Prism, pink
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini CCD
diffractometer
1353 independent reflections
Radiation source: fine-focus sealed tube1161 reflections with I > 2σ(I)
graphiteRint = 0.024
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 1.6°
CCD_Profile_fitting scansh = 2929
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.917, Tmax = 0.917l = 89
9911 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.4479P]
where P = (Fo2 + 2Fc2)/3
1353 reflections(Δ/σ)max = 0.001
113 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H6ClNOV = 1541 (2) Å3
Mr = 179.60Z = 8
Orthorhombic, PccnMo Kα radiation
a = 24.951 (19) ŵ = 0.44 mm1
b = 7.733 (6) ÅT = 296 K
c = 7.988 (6) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini CCD
diffractometer
1353 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1161 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.917Rint = 0.024
9911 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088Δρmax = 0.17 e Å3
S = 1.06Δρmin = 0.23 e Å3
1353 reflectionsAbsolute structure: ?
113 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.73621 (2)1.01875 (7)0.69204 (7)0.0614 (2)
N10.54956 (5)0.88864 (17)1.12378 (17)0.0369 (3)
O10.49027 (5)0.70991 (15)1.25021 (16)0.0472 (3)
C10.53024 (6)0.7277 (2)1.1598 (2)0.0369 (4)
C50.59440 (6)0.9205 (2)1.02710 (19)0.0349 (4)
C20.55943 (7)0.5842 (2)1.0882 (2)0.0398 (4)
H20.54770.47191.10790.048*
C40.62280 (6)0.7806 (2)0.95924 (19)0.0357 (4)
C90.66766 (7)0.8129 (2)0.8591 (2)0.0409 (4)
H90.68710.72140.81400.049*
C70.65567 (7)1.1184 (2)0.8970 (2)0.0487 (5)
H70.66711.23080.87590.058*
C80.68283 (7)0.9794 (2)0.8280 (2)0.0426 (4)
C30.60308 (7)0.6101 (2)0.9940 (2)0.0404 (4)
H30.62110.51510.95000.049*
C60.61155 (7)1.0894 (2)0.9970 (2)0.0453 (4)
H60.59331.18211.04430.054*
H10.5337 (8)0.980 (2)1.170 (2)0.044 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0512 (3)0.0595 (3)0.0736 (4)0.0024 (2)0.0190 (2)0.0143 (2)
N10.0428 (8)0.0276 (7)0.0404 (8)0.0031 (6)0.0035 (6)0.0012 (6)
O10.0483 (7)0.0359 (7)0.0574 (8)0.0015 (5)0.0130 (7)0.0020 (6)
C10.0406 (9)0.0330 (9)0.0371 (9)0.0011 (7)0.0033 (7)0.0012 (7)
C50.0383 (8)0.0322 (8)0.0342 (8)0.0014 (7)0.0020 (7)0.0001 (7)
C20.0470 (10)0.0269 (8)0.0454 (9)0.0006 (7)0.0023 (8)0.0004 (7)
C40.0394 (8)0.0317 (9)0.0359 (9)0.0045 (6)0.0050 (7)0.0004 (7)
C90.0399 (9)0.0400 (9)0.0428 (10)0.0078 (7)0.0007 (8)0.0004 (8)
C70.0499 (10)0.0343 (9)0.0618 (11)0.0035 (8)0.0056 (9)0.0036 (9)
C80.0368 (9)0.0450 (10)0.0461 (10)0.0016 (7)0.0009 (7)0.0049 (8)
C30.0475 (10)0.0298 (8)0.0440 (10)0.0078 (7)0.0022 (8)0.0025 (7)
C60.0506 (10)0.0294 (9)0.0558 (11)0.0031 (7)0.0071 (9)0.0024 (8)
Geometric parameters (Å, °) top
Cl1—C81.745 (2)C4—C91.398 (2)
N1—C11.365 (2)C4—C31.434 (2)
N1—C51.382 (2)C9—C81.365 (3)
N1—H10.887 (19)C9—H90.9300
O1—C11.239 (2)C7—C61.379 (3)
C1—C21.445 (2)C7—C81.385 (3)
C5—C61.395 (2)C7—H70.9300
C5—C41.402 (2)C3—H30.9300
C2—C31.339 (2)C6—H60.9300
C2—H20.9300
C1—N1—C5124.49 (14)C8—C9—C4119.66 (15)
C1—N1—H1118.7 (12)C8—C9—H9120.2
C5—N1—H1116.7 (12)C4—C9—H9120.2
O1—C1—N1120.54 (15)C6—C7—C8119.65 (16)
O1—C1—C2123.46 (15)C6—C7—H7120.2
N1—C1—C2116.00 (15)C8—C7—H7120.2
N1—C5—C6120.77 (14)C9—C8—C7121.59 (17)
N1—C5—C4119.20 (14)C9—C8—Cl1119.31 (14)
C6—C5—C4120.03 (16)C7—C8—Cl1119.06 (14)
C3—C2—C1121.17 (15)C2—C3—C4121.70 (15)
C3—C2—H2119.4C2—C3—H3119.2
C1—C2—H2119.4C4—C3—H3119.2
C9—C4—C5119.21 (15)C7—C6—C5119.83 (16)
C9—C4—C3123.33 (15)C7—C6—H6120.1
C5—C4—C3117.44 (15)C5—C6—H6120.1
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.887 (19)1.98 (2)2.859 (2)168.7 (17)
Symmetry codes: (i) −x+1, y+1/2, −z+5/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.887 (19)1.98 (2)2.859 (2)168.7 (17)
Symmetry codes: (i) −x+1, y+1/2, −z+5/2.
Acknowledgements top

We thank Southeast University for support.

references
References top

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Luo, Y.-H., Qian, X.-M., Gao, G., Li, J.-F. & Mao, S.-L. (2011). Acta Cryst. E67, m172.

Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.