[Journal logo]

Volume 68 
Part 1 
Page o186  
January 2012  

Received 5 December 2011
Accepted 9 December 2011
Online 21 December 2011

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.047
wR = 0.152
Data-to-parameter ratio = 22.4
Details
Open access

2,3-Diaminopyridinium sorbate-sorbic acid (1/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun@usm.my

In the title molecular salt-adduct, C5H8N3+·C6H7O2-·C6H8O2, the 2,3-diaminopyridinium cation is essentially planar, with a maximum deviation of 0.013 (2) Å, and is protanated at its pyridine N atom. The sorbate anion and sorbic acid molecules exist in extended conformations. In the crystal, the protonated N atom and one of the two amino-group H atoms are hydrogen bonded to the sorbate anion through a pair of N-H...O hydrogen bonds, forming an R12(6) ring motif. The carboxyl groups of the sorbic acid molecules and the carboxylate groups of the sorbate anions are connected via O-H...O hydrogen bonds. Furthermore, the ion pairs and neutral molecules are connected via intermolecular N-H...O hydrogen bonds, forming sheets lying parallel to (100).

Related literature

For a different crystal structure arising from the same synthesis conditions, see: Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2369.]). For background to aminopyridines, see: Peng et al. (2001[Peng, S.-H., Wang, C.-C., Lo, W.-C. & Peng, S.-M. (2001). J. Chin. Chem. Soc. 48, 987-996.]); Leung et al. (2002[Leung, M.-K., Mandal, A.-B., Wang, C.-C., Peng, S.-M., Lu, H.-F. & Chou, P.-T. (2002). J. Am. Chem. Soc. 124, 4287-4297.]); Banerjee & Murugavel (2004[Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-522.]); Lautie & Belabbes (1996[Lautie, A. & Belabbes, Y. (1996). Spectrochim. Acta Part A, 52, 1903-1914.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C6H7O2-·C6H8O2

  • Mr = 333.38

  • Monoclinic, P 21 /c

  • a = 16.1636 (17) Å

  • b = 9.6538 (10) Å

  • c = 12.6887 (13) Å

  • [beta] = 112.844 (2)°

  • V = 1824.6 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.09 mm-1

  • T = 100 K

  • 0.47 × 0.25 × 0.06 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.994

  • 27805 measured reflections

  • 5345 independent reflections

  • 2898 reflections with I > 2[sigma](I)

  • Rint = 0.045

Refinement
  • R[F2 > 2[sigma](F2)] = 0.047

  • wR(F2) = 0.152

  • S = 1.02

  • 5345 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.30 e Å-3

  • [Delta][rho]min = -0.22 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1A-H1A...O1B 0.82 1.79 2.5252 (19) 148
N1-H1N1...O1Ai 0.89 (3) 2.06 (3) 2.887 (2) 153 (3)
N1-H1N1...O2Ai 0.89 (3) 2.31 (3) 3.094 (2) 147 (2)
N2-H1N2...O1Ai 0.83 (2) 2.30 (2) 3.054 (2) 152 (2)
N2-H1N2...O2Bi 0.83 (2) 2.59 (3) 3.136 (2) 125 (2)
N2-H2N2...O2A 0.86 (2) 2.00 (3) 2.863 (2) 177 (2)
N3-H1N3...O2A 0.84 (2) 2.19 (2) 3.010 (2) 166.1 (16)
N3-H2N3...O2Bii 0.92 (3) 2.09 (3) 3.002 (2) 170 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTLand PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6558 ).


Acknowledgements

MH, JHG and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-522.  [CSD] [CrossRef] [ChemPort]
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.  [CrossRef] [ChemPort] [ISI] [details]
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2369.  [CSD] [CrossRef] [details]
Lautie, A. & Belabbes, Y. (1996). Spectrochim. Acta Part A, 52, 1903-1914.
Leung, M.-K., Mandal, A.-B., Wang, C.-C., Peng, S.-M., Lu, H.-F. & Chou, P.-T. (2002). J. Am. Chem. Soc. 124, 4287-4297.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Peng, S.-H., Wang, C.-C., Lo, W.-C. & Peng, S.-M. (2001). J. Chin. Chem. Soc. 48, 987-996.  [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]


Acta Cryst (2012). E68, o186  [ doi:10.1107/S1600536811053025 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.