supplementary materials


hb6561 scheme

Acta Cryst. (2012). E68, o193    [ doi:10.1107/S1600536811053268 ]

2-[((E)-2-{2-[(E)-2-Hydroxybenzylidene]hydrazinecarbonyl}hydrazinylidene)methyl]phenol

R. Bikas, P. M. Anarjan, S. W. Ng and E. R. T. Tiekink

Abstract top

The molecule of the title compound, C15H14N4O3, is completed by the application of crystallographic twofold symmetry, with the carbonyl group lying on the rotation axis. The molecule is close to planar: the greatest deviation of a torsion angle from 0° is 7.3 (2)° about the bond linking the phenol ring to the rest of the molecule. An intramolecular O-H...N(imine) hydrogen bond is formed in each half of the molecule. The carbonyl O atom is anti with respect to the amine H atoms and this allows for the formation of N-H...O(hydroxyl) hydrogen bonds in the crystal, which results in supramolecular layers lying parallel to (100).

Comment top

In connection with previous structural studies of carbohydrazide derivatives (Bikas et al., 2010a,b), the title compound, (I), was investigated. The molecule, Fig. 1, has crystallographic twofold symmetry. The molecule is essentially planar with a r.m.s. deviation for all 22 atoms comprising the full molecule being 0.074 Å. The maximum deviation from 0° for a torsion angle in the molecule is 7.3 (2)° for N2—C2—C3—C8. The carbonyl-O atom is anti with respect to the amine-H atoms, and the conformation about the C2N2 imine bond [1.2857 (19) Å] is E.The hydroxyl-H atom forms an intramolecular hydrogen bond to the imine-H atom, Table 1.

In the crystal, the amine-H atoms form hydrogen bonds to the hydroxyl-O atoms to form supramolecular layers parallel to (100), Fig. 2 and Table 1.

Related literature top

For the structures of related carbohydrazides, see: Bikas et al. (2010a,b).

Experimental top

All reagents were commercially available and used as received. A methanol (10 ml) solution of 2-hydroxybenzaldehyde (3 mmol) was added drop-wise to a methanol solution (10 ml) of carbohydrazide (1.5 mmol), and the mixture was refluxed for 3 h. Then the solution was evaporated on a steam bath to 5 ml and cooled to room temperature. White precipitates of the title compound were separated and filtered off, washed with cooled methanol (3 ml) and then dried in air. Crystals of the title compound were obtained from its methanol solution by slow solvent evaporation. Yield: 94%. M.pt. 496–497 K. Selected IR data (cm-1): 3272 (v. broad, N—H), 1721 (CO); 1625 (s, CN(azomethine)); 959 (m, N—N); 1353, 1273 (s, C—O).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 Å, Uiso(H) = 1.2 Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxyl and amino H-atoms were refined freely. In the absence of significant anomalous scattering effects, 242 Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 70% probability level. The molecule has twofold symmetry and the unlabelled atoms are related by the symmetry operation 1 - x, 1 - y, z.
[Figure 2] Fig. 2. A view of the supramolecular layer parallel to (100) in (I). The N—H···O hydrogen bonds are shown as blue dashed lines.
2-[((E)-2-{2-[(E)-2- Hydroxybenzylidene]hydrazinecarbonyl}hydrazinylidene)methyl]phenol top
Crystal data top
C15H14N4O3F(000) = 624
Mr = 298.30Dx = 1.440 Mg m3
Orthorhombic, Aba2Cu Kα radiation, λ = 1.54178 Å
Hall symbol: A 2 -2acCell parameters from 1858 reflections
a = 14.3101 (4) Åθ = 3.1–76.5°
b = 9.3620 (2) ŵ = 0.86 mm1
c = 10.2697 (2) ÅT = 100 K
V = 1375.84 (6) Å3Prism, colourless
Z = 40.25 × 0.25 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
757 independent reflections
Radiation source: SuperNova (Cu) X-ray Source750 reflections with I > 2σ(I)
MirrorRint = 0.014
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 6.2°
ω scanh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1110
Tmin = 0.342, Tmax = 1.000l = 1012
2323 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.2173P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
757 reflectionsΔρmax = 0.16 e Å3
110 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (7)
Crystal data top
C15H14N4O3V = 1375.84 (6) Å3
Mr = 298.30Z = 4
Orthorhombic, Aba2Cu Kα radiation
a = 14.3101 (4) ŵ = 0.86 mm1
b = 9.3620 (2) ÅT = 100 K
c = 10.2697 (2) Å0.25 × 0.25 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
757 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
750 reflections with I > 2σ(I)
Tmin = 0.342, Tmax = 1.000Rint = 0.014
2323 measured reflectionsθmax = 76.7°
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.16 e Å3
S = 1.10Δρmin = 0.21 e Å3
757 reflectionsAbsolute structure: ?
110 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50000.50000.50067 (16)0.0218 (4)
O20.59665 (8)0.87891 (12)0.43307 (12)0.0197 (3)
N10.52439 (9)0.61383 (13)0.69670 (15)0.0186 (3)
N20.55917 (9)0.73346 (13)0.63891 (13)0.0170 (3)
C10.50000.50000.6191 (2)0.0174 (4)
C20.57681 (11)0.84255 (16)0.71089 (15)0.0172 (3)
H2A0.56460.83950.80180.021*
C30.61574 (10)0.97076 (15)0.65176 (15)0.0159 (4)
C40.64432 (11)1.08454 (17)0.73122 (16)0.0191 (4)
H40.63801.07690.82300.023*
C50.68171 (11)1.20828 (18)0.67764 (18)0.0211 (4)
H50.70091.28470.73240.025*
C60.69086 (11)1.21928 (18)0.54321 (19)0.0219 (4)
H60.71651.30360.50620.026*
C70.66290 (11)1.10842 (16)0.46270 (15)0.0195 (4)
H70.66981.11690.37100.023*
C80.62482 (9)0.98474 (16)0.51579 (14)0.0159 (4)
H10.5006 (17)0.614 (2)0.777 (3)0.023 (5)*
H20.579 (2)0.809 (3)0.481 (3)0.051 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (8)0.0208 (7)0.0138 (8)0.0031 (6)0.0000.000
O20.0260 (6)0.0186 (5)0.0146 (5)0.0020 (4)0.0006 (5)0.0009 (4)
N10.0253 (7)0.0169 (7)0.0136 (6)0.0027 (5)0.0024 (5)0.0014 (5)
N20.0183 (6)0.0166 (7)0.0160 (7)0.0001 (5)0.0004 (5)0.0014 (5)
C10.0181 (10)0.0175 (10)0.0167 (10)0.0017 (7)0.0000.000
C20.0176 (6)0.0190 (7)0.0149 (7)0.0010 (5)0.0001 (5)0.0002 (6)
C30.0147 (7)0.0180 (7)0.0150 (7)0.0022 (6)0.0004 (6)0.0005 (6)
C40.0181 (7)0.0219 (8)0.0174 (8)0.0007 (6)0.0004 (6)0.0010 (7)
C50.0195 (7)0.0197 (8)0.0241 (8)0.0025 (5)0.0002 (6)0.0040 (6)
C60.0186 (8)0.0209 (8)0.0261 (9)0.0031 (5)0.0009 (7)0.0035 (7)
C70.0190 (7)0.0230 (7)0.0166 (8)0.0003 (6)0.0009 (6)0.0027 (6)
C80.0136 (7)0.0181 (7)0.0161 (9)0.0016 (5)0.0009 (6)0.0003 (6)
Geometric parameters (Å, °) top
O1—C11.217 (3)C3—C41.403 (2)
O2—C81.3660 (19)C3—C81.408 (2)
O2—H20.86 (3)C4—C51.390 (2)
N1—N21.3617 (16)C4—H40.9500
N1—C11.3754 (19)C5—C61.391 (3)
N1—H10.89 (3)C5—H50.9500
N2—C21.2857 (19)C6—C71.386 (2)
C1—N1i1.3754 (19)C6—H60.9500
C2—C31.456 (2)C7—C81.391 (2)
C2—H2A0.9500C7—H70.9500
C8—O2—H2106 (2)C5—C4—H4119.5
N2—N1—C1118.53 (14)C3—C4—H4119.5
N2—N1—H1122.6 (13)C4—C5—C6119.41 (17)
C1—N1—H1116.2 (14)C4—C5—H5120.3
C2—N2—N1118.33 (13)C6—C5—H5120.3
O1—C1—N1125.38 (10)C7—C6—C5120.64 (16)
O1—C1—N1i125.38 (10)C7—C6—H6119.7
N1—C1—N1i109.2 (2)C5—C6—H6119.7
N2—C2—C3119.35 (14)C6—C7—C8120.17 (15)
N2—C2—H2A120.3C6—C7—H7119.9
C3—C2—H2A120.3C8—C7—H7119.9
C4—C3—C8118.64 (14)O2—C8—C7118.40 (14)
C4—C3—C2119.67 (14)O2—C8—C3121.46 (14)
C8—C3—C2121.69 (14)C7—C8—C3120.14 (14)
C5—C4—C3120.99 (16)
C1—N1—N2—C2176.05 (12)C4—C5—C6—C70.1 (2)
N2—N1—C1—O15.97 (14)C5—C6—C7—C80.3 (2)
N2—N1—C1—N1i174.03 (14)C6—C7—C8—O2178.90 (13)
N1—N2—C2—C3178.82 (12)C6—C7—C8—C30.9 (2)
N2—C2—C3—C4173.31 (13)C4—C3—C8—O2178.76 (13)
N2—C2—C3—C87.3 (2)C2—C3—C8—O20.6 (2)
C8—C3—C4—C50.6 (2)C4—C3—C8—C71.1 (2)
C2—C3—C4—C5179.99 (13)C2—C3—C8—C7179.58 (13)
C3—C4—C5—C60.0 (2)
Symmetry codes: (i) −x+1, −y+1, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.86 (3)1.79 (4)2.5710 (17)150 (3)
N1—H1···O2ii0.89 (3)2.12 (3)2.983 (2)161 (2)
Symmetry codes: (ii) −x+1, −y+3/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.86 (3)1.79 (4)2.5710 (17)150 (3)
N1—H1···O2i0.89 (3)2.12 (3)2.983 (2)161 (2)
Symmetry codes: (i) −x+1, −y+3/2, z+1/2.
Acknowledgements top

The authors are grateful to the Islamic Azad University (Tabriz Branch), the University of Zanjan and the University of Malaya for support of this study.

references
References top

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bikas, R., Hosseini Monfared, H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010a). Acta Cryst. E66, o2073.

Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010b). Acta Cryst. E66, o2015.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.