supplementary materials


hg5142 scheme

Acta Cryst. (2012). E68, o120    [ doi:10.1107/S1600536811051774 ]

1-Benzoyl-3-(4-n-butylphenyl)thiourea

M. K. Rauf, M. Ebihara, A. Badshah and Imtiaz-ud-Din

Abstract top

The dihedral angle between the benzoyl and phenyl groups in the title compound, C18H20N2OS, is 30.57 (4)°. The crystal packing is characterized by N-H...O hydrogen bonds. In the crysta, pairs of N-H...S hydrogen bonds link the molecules into inversion dimers

Comment top

The background to this study has been set out in our previous work for the structural chemistry of N,N'-disubstituted thiourea (Khawar Rauf et al., 2009a, 2009b). Herein, as a continuation of these crytallographic studies, the structure of the title compound (I) is described, Fig. 1. Compared to N-benzoyl-N'-phenylthioureas [Cambridge Structural Database (Mogul Version 1.7; Allen, 2002)and (Allen et al., 1987)], the n-butyl substitution at C(6) on phenyl ring, implies no significant effect on these bond lengths. and show the molecule to exist in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. The dihedral angles to the N(1) C(1)S(1) N(2) C(2)O(1) plane are 23.66 (8)° for the ring formed by C(13) to C(18) and 8.16 (9)° for the ring formed by C(3) to C(8). An intramolecular N—H···O H–bond is present (Table 1), forming a six-membered ring commonly observed in this class of compounds (Khawar Rauf et al., 2009a, 2009b). In the crystal packing of (I), intermolecular N—H···S H–bonds link the molecules into centrosymmetric dimers (Fig.2).

Related literature top

For background to our work on the

structural chemistry of N,N'-disubstituted thioures and for related structures, see: Khawer Rauf et al. (2009a,b). For bond-length data, see: Allen et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Freshly prepared benzoylisothiocyanate (1.63 g, 10 mmol) was dissolved in acetone (30 ml) and stirred for 30 minutes. Afterwards neat 4-n-butylaniline (1.49 g, 10 mmol) was added and the resulting mixture was stirred for 2 h. The reaction mixture was then poured into acidified water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/ 1,1-dichloromethane (1:1 v/v) to give fine crystals of the title compound (I), with an overall yield of 95%.

Refinement top

Some strong reflections were saturated in the experimental condition and excluded from the refinement. Hydrogen atoms were included in calculated positions and refined as riding on their parent atom with N—H = 0.88 Å and Uiso(H) = 1.2U(Neq), Caromatic—H = 0.95 Å and Uiso(H) = 1.2U(Ceq) or C—H = 0.98–0.99 Å and Uiso(H) = 1.5U(Ceq), for butyl C atoms.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004); software used to prepare material for publication: Yadokari-XG 2009 (Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP of (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds showns as dashed lines.
[Figure 2] Fig. 2. Packing diagram of (I). Hydrogen bonds shown as dashed lines.
1-Benzoyl-3-(4-n-butylphenyl)thiourea top
Crystal data top
C18H20N2OSZ = 2
Mr = 312.42F(000) = 332
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 4.648 (3) ÅCell parameters from 2558 reflections
b = 13.274 (8) Åθ = 3.1–27.5°
c = 13.690 (8) ŵ = 0.20 mm1
α = 106.765 (7)°T = 123 K
β = 90.013 (6)°Needle like, colorless
γ = 92.700 (8)°0.40 × 0.10 × 0.10 mm
V = 807.9 (8) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3242 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.043
Graphite Monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 14.6199 pixels mm-1h = 63
dtintegrate.ref scansk = 1714
6380 measured reflectionsl = 1317
3632 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.4308P]
where P = (Fo2 + 2Fc2)/3
3632 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H20N2OSγ = 92.700 (8)°
Mr = 312.42V = 807.9 (8) Å3
Triclinic, P1Z = 2
a = 4.648 (3) ÅMo Kα radiation
b = 13.274 (8) ŵ = 0.20 mm1
c = 13.690 (8) ÅT = 123 K
α = 106.765 (7)°0.40 × 0.10 × 0.10 mm
β = 90.013 (6)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3242 reflections with I > 2σ(I)
6380 measured reflectionsRint = 0.043
3632 independent reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.33 e Å3
S = 1.06Δρmin = 0.27 e Å3
3632 reflectionsAbsolute structure: ?
200 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4183 (3)0.19623 (11)0.53711 (10)0.0172 (3)
S10.33263 (9)0.11726 (3)0.60881 (3)0.02424 (12)
N10.3191 (3)0.29075 (10)0.54395 (9)0.0180 (3)
H10.38620.31940.49750.022*
N20.6153 (3)0.16024 (10)0.45859 (9)0.0178 (3)
H20.69070.09990.45560.021*
C20.7060 (3)0.20705 (12)0.38572 (11)0.0190 (3)
O10.6324 (3)0.29449 (9)0.38503 (9)0.0271 (3)
C30.1241 (3)0.35335 (11)0.61301 (11)0.0165 (3)
C40.0402 (3)0.32010 (12)0.68386 (12)0.0212 (3)
H40.02850.25060.68900.025*
C50.2219 (3)0.39021 (13)0.74715 (12)0.0217 (3)
H50.33220.36740.79590.026*
C60.2477 (3)0.49186 (12)0.74157 (11)0.0190 (3)
C70.0851 (3)0.52320 (12)0.66869 (11)0.0210 (3)
H70.10080.59220.66240.025*
C80.0986 (3)0.45522 (12)0.60552 (11)0.0201 (3)
H80.20830.47810.55660.024*
C90.4331 (3)0.56761 (13)0.81559 (11)0.0227 (3)
H9B0.60860.52910.82950.027*
H9A0.49370.62210.78450.027*
C100.2717 (3)0.62093 (13)0.91620 (11)0.0218 (3)
H10B0.20760.56590.94590.026*
H10A0.09760.65980.90170.026*
C110.4509 (4)0.69711 (14)0.99458 (12)0.0264 (3)
H11B0.52130.75090.96440.032*
H11A0.62080.65801.01170.032*
C120.2805 (4)0.75183 (15)1.09179 (13)0.0329 (4)
H12C0.20890.69891.12170.049*
H12A0.40550.79831.14060.049*
H12B0.11740.79351.07570.049*
C130.8938 (3)0.14395 (12)0.30440 (11)0.0185 (3)
C140.9027 (3)0.16959 (13)0.21251 (12)0.0247 (3)
H140.79840.22680.20490.030*
C151.0633 (4)0.11182 (14)0.13232 (12)0.0281 (4)
H151.06670.12870.06950.034*
C161.2191 (4)0.02936 (14)0.14376 (12)0.0275 (4)
H161.32900.01020.08870.033*
C171.2152 (3)0.00445 (13)0.23512 (12)0.0245 (3)
H171.32280.05200.24280.029*
C181.0537 (3)0.06196 (12)0.31573 (11)0.0190 (3)
H181.05260.04520.37870.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0203 (7)0.0183 (7)0.0122 (6)0.0008 (5)0.0007 (5)0.0033 (5)
S10.0384 (2)0.01744 (19)0.0190 (2)0.00574 (15)0.01041 (15)0.00803 (14)
N10.0224 (6)0.0170 (6)0.0155 (6)0.0029 (5)0.0043 (5)0.0061 (5)
N20.0225 (6)0.0157 (6)0.0157 (6)0.0036 (5)0.0035 (5)0.0050 (5)
C20.0219 (7)0.0185 (7)0.0172 (7)0.0005 (5)0.0018 (5)0.0062 (6)
O10.0365 (6)0.0215 (6)0.0274 (6)0.0072 (5)0.0122 (5)0.0130 (5)
C30.0179 (7)0.0171 (7)0.0136 (6)0.0014 (5)0.0001 (5)0.0028 (5)
C40.0213 (7)0.0205 (7)0.0227 (7)0.0013 (6)0.0026 (6)0.0078 (6)
C50.0209 (7)0.0258 (8)0.0189 (7)0.0008 (6)0.0038 (6)0.0073 (6)
C60.0165 (7)0.0227 (8)0.0157 (7)0.0019 (5)0.0034 (5)0.0019 (6)
C70.0256 (8)0.0178 (7)0.0196 (7)0.0039 (6)0.0004 (6)0.0052 (6)
C80.0242 (7)0.0214 (7)0.0163 (7)0.0016 (6)0.0021 (5)0.0078 (6)
C90.0202 (7)0.0267 (8)0.0188 (7)0.0056 (6)0.0002 (6)0.0020 (6)
C100.0198 (7)0.0264 (8)0.0172 (7)0.0041 (6)0.0012 (6)0.0029 (6)
C110.0261 (8)0.0318 (9)0.0186 (8)0.0060 (7)0.0029 (6)0.0023 (7)
C120.0399 (10)0.0363 (10)0.0180 (8)0.0041 (8)0.0022 (7)0.0004 (7)
C130.0203 (7)0.0189 (7)0.0163 (7)0.0016 (5)0.0020 (5)0.0055 (6)
C140.0300 (8)0.0260 (8)0.0214 (8)0.0048 (6)0.0040 (6)0.0116 (6)
C150.0361 (9)0.0335 (9)0.0161 (7)0.0021 (7)0.0052 (6)0.0091 (7)
C160.0299 (8)0.0286 (9)0.0208 (8)0.0022 (7)0.0077 (6)0.0020 (7)
C170.0241 (8)0.0237 (8)0.0250 (8)0.0026 (6)0.0032 (6)0.0058 (6)
C180.0203 (7)0.0203 (7)0.0165 (7)0.0014 (6)0.0005 (5)0.0058 (6)
Geometric parameters (Å, °) top
C1—N11.335 (2)C9—H9A0.9900
C1—N21.4028 (19)C10—C111.523 (2)
C1—S11.6659 (16)C10—H10B0.9900
N1—C31.4228 (18)C10—H10A0.9900
N1—H10.8800C11—C121.521 (2)
N2—C21.3755 (19)C11—H11B0.9900
N2—H20.8800C11—H11A0.9900
C2—O11.2282 (19)C12—H12C0.9800
C2—C131.495 (2)C12—H12A0.9800
C3—C41.391 (2)C12—H12B0.9800
C3—C81.396 (2)C13—C181.391 (2)
C4—C51.393 (2)C13—C141.395 (2)
C4—H40.9500C14—C151.386 (2)
C5—C61.384 (2)C14—H140.9500
C5—H50.9500C15—C161.386 (2)
C6—C71.397 (2)C15—H150.9500
C6—C91.508 (2)C16—C171.383 (2)
C7—C81.383 (2)C16—H160.9500
C7—H70.9500C17—C181.390 (2)
C8—H80.9500C17—H170.9500
C9—C101.532 (2)C18—H180.9500
C9—H9B0.9900
N1—C1—N2114.78 (12)C11—C10—C9113.76 (13)
N1—C1—S1127.89 (11)C11—C10—H10B108.8
N2—C1—S1117.32 (11)C9—C10—H10B108.8
C1—N1—C3131.41 (13)C11—C10—H10A108.8
C1—N1—H1114.3C9—C10—H10A108.8
C3—N1—H1114.3H10B—C10—H10A107.7
C2—N2—C1128.45 (13)C12—C11—C10112.35 (14)
C2—N2—H2115.8C12—C11—H11B109.1
C1—N2—H2115.8C10—C11—H11B109.1
O1—C2—N2122.56 (14)C12—C11—H11A109.1
O1—C2—C13121.20 (13)C10—C11—H11A109.1
N2—C2—C13116.21 (13)H11B—C11—H11A107.9
C4—C3—C8119.34 (13)C11—C12—H12C109.5
C4—C3—N1125.23 (14)C11—C12—H12A109.5
C8—C3—N1115.43 (13)H12C—C12—H12A109.5
C3—C4—C5119.06 (14)C11—C12—H12B109.5
C3—C4—H4120.5H12C—C12—H12B109.5
C5—C4—H4120.5H12A—C12—H12B109.5
C6—C5—C4122.41 (14)C18—C13—C14119.47 (14)
C6—C5—H5118.8C18—C13—C2123.58 (13)
C4—C5—H5118.8C14—C13—C2116.94 (14)
C5—C6—C7117.70 (13)C15—C14—C13120.13 (15)
C5—C6—C9120.87 (14)C15—C14—H14119.9
C7—C6—C9121.34 (14)C13—C14—H14119.9
C8—C7—C6120.92 (14)C14—C15—C16120.04 (15)
C8—C7—H7119.5C14—C15—H15120.0
C6—C7—H7119.5C16—C15—H15120.0
C7—C8—C3120.55 (14)C17—C16—C15120.22 (15)
C7—C8—H8119.7C17—C16—H16119.9
C3—C8—H8119.7C15—C16—H16119.9
C6—C9—C10111.53 (12)C16—C17—C18119.98 (15)
C6—C9—H9B109.3C16—C17—H17120.0
C10—C9—H9B109.3C18—C17—H17120.0
C6—C9—H9A109.3C17—C18—C13120.14 (14)
C10—C9—H9A109.3C17—C18—H18119.9
H9B—C9—H9A108.0C13—C18—H18119.9
N2—C1—N1—C3178.89 (13)N1—C3—C8—C7179.89 (13)
S1—C1—N1—C32.0 (2)C5—C6—C9—C1083.10 (18)
N1—C1—N2—C23.7 (2)C7—C6—C9—C1093.57 (17)
S1—C1—N2—C2175.53 (12)C6—C9—C10—C11179.06 (14)
C1—N2—C2—O14.8 (2)C9—C10—C11—C12177.71 (15)
C1—N2—C2—C13173.38 (13)O1—C2—C13—C18159.84 (15)
C1—N1—C3—C49.2 (2)N2—C2—C13—C1822.0 (2)
C1—N1—C3—C8171.86 (14)O1—C2—C13—C1420.9 (2)
C8—C3—C4—C51.3 (2)N2—C2—C13—C14157.27 (14)
N1—C3—C4—C5179.74 (14)C18—C13—C14—C151.8 (2)
C3—C4—C5—C60.7 (2)C2—C13—C14—C15177.51 (15)
C4—C5—C6—C70.5 (2)C13—C14—C15—C161.0 (3)
C4—C5—C6—C9176.28 (14)C14—C15—C16—C170.1 (3)
C5—C6—C7—C81.0 (2)C15—C16—C17—C180.2 (3)
C9—C6—C7—C8175.77 (14)C16—C17—C18—C130.6 (2)
C6—C7—C8—C30.3 (2)C14—C13—C18—C171.6 (2)
C4—C3—C8—C70.9 (2)C2—C13—C18—C17177.65 (14)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.882.630 (2)142.
N2—H2···S1i0.882.763.550 (2)151.
Symmetry codes: (i) −x+1, −y, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.882.630 (2)142.
N2—H2···S1i0.882.763.550 (2)151.
Symmetry codes: (i) −x+1, −y, −z+1.
Acknowledgements top

MKR is grateful to the Quaid-i-Azam University, Islamabad, for financial support for a post-doctoral fellowship.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1–19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.

Khawar Rauf, M., Bolte, M. & Badshah, A. (2009a). Acta Cryst. E65, o177.

Khawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o240.

Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.