supplementary materials


hg5146 scheme

Acta Cryst. (2012). E68, o65    [ doi:10.1107/S1600536811052147 ]

5-Amino-1-(4-nitrophenyl)-1H-pyrazole-3-carbonitrile

Q.-H. Jiang, Q. He, J.-Q. Zhang, Y. Yang and R. Wan

Abstract top

The title compound, C10H7N5O2, was synthesized by the reaction of 4-nitroaniline and 2,3-dicyanopropionic acid ethyl ester. In the crystal, N-H...O and C-H...O hydrogen bonds link the molecules, forming a three-dimensional network.

Comment top

In a variety of biological heterocyclic compounds, N-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties (Cheng et al., 2008). These compounds are known to exhibit diverse biological activities, such as insecticidal (Zhao et al., 2010) and antifungal activities (Liu et al., 2010).

Here we report the crystal structure of the title compound,(I). In the molecule of the title compound (Fig.1),the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A(C1—C6),B(N2/N3/C9/C8/C7) are, of course, planar. The dihedral angle between them is A/B = 34.3 (1) Å. In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

N-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties, see: Cheng et al. (2008). They also exhibit diverse biological activities, such as insecticidal (Zhao et al., 2010) and antifungal activities (Liu et al., 2010). For bond-length data, see: Allen et al. (1987).

Experimental top

Sodium nitrite(1.49 g) was dissolved 10 ml water, then the solution was added dropwise to a mixture of 4-nitrophenylamino (0.02 mol) and 36.5% aq. HCl(5 ml) at 0–5°C. After the addition, the above reaction mixture was stirred for 10 min at 0–5°C. 2,3-Dicyano-propionic acid ethyl ester (0.02 mol) was added dropwise and stirred for 2 hr at room temperature. The reaction mixture was extracted with dichloromethane and the pH was adjusted to 9 with ammonia. The aqueous layer was removed and the organic layer was dried over anhydrous Na2SO4, concentrated and precipitated. The pure compound (I) was obtained by recrystallization from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram for (I). Hydrogen bonds are shown as dashed lines.
5-Amino-1-(4-nitrophenyl)-1H-pyrazole-3-carbonitrile top
Crystal data top
C10H7N5O2F(000) = 472
Mr = 229.21Dx = 1.467 Mg m3
Monoclinic, CcMelting point = 498–501 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 3.7685 (2) ÅCell parameters from 25 reflections
b = 27.3441 (17) Åθ = 9–13°
c = 10.1294 (8) ŵ = 0.11 mm1
β = 96.20 (3)°T = 293 K
V = 1037.70 (12) Å3Block, yellow
Z = 40.30 × 0.30 × 0.10 mm
Data collection top
Enaf–Nonius CAD-4
diffractometer
856 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
graphiteθmax = 25.4°, θmin = 2.5°
ω/2θ scansh = 04
Absorption correction: ψ scan
(North et al., 1968)
k = 3232
Tmin = 0.968, Tmax = 0.989l = 1212
2148 measured reflections3 standard reflections every 200 reflections
951 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.093P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
951 reflectionsΔρmax = 0.26 e Å3
155 parametersΔρmin = 0.31 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (6)
Crystal data top
C10H7N5O2V = 1037.70 (12) Å3
Mr = 229.21Z = 4
Monoclinic, CcMo Kα radiation
a = 3.7685 (2) ŵ = 0.11 mm1
b = 27.3441 (17) ÅT = 293 K
c = 10.1294 (8) Å0.30 × 0.30 × 0.10 mm
β = 96.20 (3)°
Data collection top
Enaf–Nonius CAD-4
diffractometer
856 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.071
Tmin = 0.968, Tmax = 0.989θmax = 25.4°
2148 measured reflections3 standard reflections every 200 reflections
951 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.26 e Å3
S = 1.00Δρmin = 0.31 e Å3
951 reflectionsAbsolute structure: ?
155 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6000 (9)0.14112 (13)0.7685 (3)0.0345 (8)
H1A0.64970.17370.78900.041*
N10.7783 (9)0.01800 (13)0.9127 (4)0.0495 (9)
O10.9593 (11)0.02857 (14)1.0134 (4)0.0782 (13)
N20.2632 (8)0.16762 (10)0.5653 (3)0.0343 (7)
C20.7254 (10)0.10486 (14)0.8562 (4)0.0370 (8)
H2A0.86160.11240.93570.044*
O20.6973 (13)0.02441 (11)0.8819 (4)0.0763 (12)
C30.6406 (9)0.05648 (13)0.8214 (3)0.0347 (8)
N30.1670 (9)0.21026 (11)0.6233 (3)0.0362 (7)
C40.4432 (9)0.04433 (12)0.7061 (4)0.0361 (8)
H4A0.39400.01170.68580.043*
N40.2620 (12)0.13064 (12)0.3498 (3)0.0517 (9)
H4B0.35810.10430.38340.062*
H4C0.21090.13310.26520.062*
C50.3155 (9)0.08073 (14)0.6189 (3)0.0353 (8)
H5A0.17480.07310.54050.042*
N50.2189 (12)0.32149 (13)0.5701 (4)0.0571 (10)
C60.4020 (9)0.12921 (12)0.6510 (4)0.0316 (7)
C70.1906 (10)0.16856 (13)0.4306 (4)0.0367 (8)
C80.0411 (12)0.21334 (14)0.3985 (4)0.0412 (8)
H8A0.03590.22550.31460.049*
C90.0310 (9)0.23653 (12)0.5213 (4)0.0347 (8)
C100.1059 (10)0.28392 (14)0.5470 (4)0.0411 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (17)0.0288 (16)0.0351 (16)0.0030 (14)0.0102 (15)0.0032 (14)
N10.050 (2)0.0475 (19)0.053 (2)0.0072 (16)0.0127 (18)0.0160 (16)
O10.094 (3)0.070 (2)0.065 (2)0.005 (2)0.021 (2)0.0227 (19)
N20.0461 (16)0.0256 (14)0.0317 (14)0.0020 (13)0.0072 (12)0.0000 (12)
C20.0424 (18)0.0389 (18)0.0305 (16)0.0005 (16)0.0073 (14)0.0026 (14)
O20.111 (3)0.0379 (17)0.079 (2)0.0041 (19)0.010 (2)0.0194 (16)
C30.0330 (17)0.0337 (17)0.0394 (17)0.0046 (15)0.0129 (15)0.0066 (15)
N30.0488 (17)0.0255 (14)0.0357 (15)0.0032 (12)0.0108 (13)0.0018 (10)
C40.0400 (19)0.0275 (17)0.0427 (18)0.0031 (14)0.0135 (16)0.0008 (14)
N40.090 (3)0.0352 (16)0.0300 (14)0.0101 (17)0.0084 (16)0.0028 (12)
C50.0416 (19)0.0306 (18)0.0340 (17)0.0001 (14)0.0053 (15)0.0029 (12)
N50.080 (3)0.0384 (18)0.055 (2)0.0178 (19)0.0208 (19)0.0037 (16)
C60.0351 (16)0.0261 (15)0.0360 (17)0.0022 (14)0.0145 (14)0.0033 (13)
C70.0441 (19)0.0337 (17)0.0332 (16)0.0010 (15)0.0091 (15)0.0011 (14)
C80.050 (2)0.0407 (18)0.0330 (17)0.0015 (16)0.0047 (15)0.0086 (14)
C90.0379 (18)0.0289 (17)0.0383 (17)0.0014 (15)0.0090 (14)0.0023 (13)
C100.049 (2)0.036 (2)0.0410 (19)0.0059 (17)0.0150 (17)0.0075 (15)
Geometric parameters (Å, °) top
C1—C61.374 (5)C4—C51.382 (5)
C1—C21.381 (5)C4—H4A0.9300
C1—H1A0.9300N4—C71.366 (5)
N1—O11.199 (5)N4—H4B0.8600
N1—O21.231 (5)N4—H4C0.8600
N1—C31.459 (5)C5—C61.395 (5)
N2—C71.363 (5)C5—H5A0.9300
N2—N31.371 (4)N5—C101.146 (5)
N2—C61.425 (4)C7—C81.372 (5)
C2—C31.397 (5)C8—C91.400 (5)
C2—H2A0.9300C8—H8A0.9300
C3—C41.357 (5)C9—C101.429 (5)
N3—C91.316 (5)
C6—C1—C2120.2 (3)C7—N4—H4B120.0
C6—C1—H1A119.9C7—N4—H4C120.0
C2—C1—H1A119.9H4B—N4—H4C120.0
O1—N1—O2123.1 (4)C4—C5—C6118.6 (3)
O1—N1—C3119.7 (4)C4—C5—H5A120.7
O2—N1—C3117.2 (4)C6—C5—H5A120.7
C7—N2—N3112.3 (3)C1—C6—C5121.2 (3)
C7—N2—C6130.1 (3)C1—C6—N2118.8 (3)
N3—N2—C6117.6 (3)C5—C6—N2119.8 (3)
C1—C2—C3117.7 (3)N2—C7—N4123.7 (3)
C1—C2—H2A121.2N2—C7—C8106.7 (3)
C3—C2—H2A121.2N4—C7—C8129.6 (4)
C4—C3—C2122.6 (3)C7—C8—C9104.1 (3)
C4—C3—N1119.6 (3)C7—C8—H8A128.0
C2—C3—N1117.8 (3)C9—C8—H8A128.0
C9—N3—N2103.1 (3)N3—C9—C8113.9 (3)
C3—C4—C5119.6 (3)N3—C9—C10118.0 (3)
C3—C4—H4A120.2C8—C9—C10128.2 (3)
C5—C4—H4A120.2N5—C10—C9178.4 (4)
C6—C1—C2—C30.6 (5)C4—C5—C6—N2177.7 (3)
C1—C2—C3—C40.1 (5)C7—N2—C6—C1150.6 (4)
C1—C2—C3—N1178.9 (3)N3—N2—C6—C133.0 (5)
O1—N1—C3—C4178.4 (4)C7—N2—C6—C533.7 (6)
O2—N1—C3—C42.3 (5)N3—N2—C6—C5142.6 (3)
O1—N1—C3—C20.4 (5)N3—N2—C7—N4179.8 (4)
O2—N1—C3—C2178.9 (4)C6—N2—C7—N43.7 (6)
C7—N2—N3—C90.8 (4)N3—N2—C7—C80.1 (4)
C6—N2—N3—C9176.1 (3)C6—N2—C7—C8176.4 (4)
C2—C3—C4—C50.7 (5)N2—C7—C8—C90.7 (4)
N1—C3—C4—C5179.4 (3)N4—C7—C8—C9179.4 (4)
C3—C4—C5—C61.6 (5)N2—N3—C9—C81.3 (4)
C2—C1—C6—C51.6 (5)N2—N3—C9—C10178.7 (3)
C2—C1—C6—N2177.2 (3)C7—C8—C9—N31.3 (5)
C4—C5—C6—C12.1 (5)C7—C8—C9—C10178.7 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O2i0.862.533.335 (5)156.
C4—H4A···O1ii0.932.523.216 (5)132.
Symmetry codes: (i) x, −y, z−1/2; (ii) x−1, −y, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O2i0.862.533.335 (5)156.
C4—H4A···O1ii0.932.523.216 (5)132.
Symmetry codes: (i) x, −y, z−1/2; (ii) x−1, −y, z−1/2.
Acknowledgements top

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for the use of the diffractometer for this research project.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Cheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org Chem. 28, 622–627.

Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897–902.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhao, Q. Q., Li, Y. Q., Xiong, L. X. & Wang, Q. M. (2010). J. Agric. Food Chem. 58, 4992–4998.