supplementary materials


hg5147 scheme

Acta Cryst. (2012). E68, o116    [ doi:10.1107/S1600536811052974 ]

1-(2-Hydroxy-3,5-dimethoxyphenyl)ethanone

W. Li, X. Li, Y. Duan, Z. Deng and R. Wang

Abstract top

In title compound, C10H12O4, all of the non-H atoms lie approximately in a plane with the largest deviation being 0.061 (2) Å. An intramolecular O-H...O hydrogen bond generates an S(6) ring motif. No classical intermolecular hydrogen bonding occurs, with only van der Waals forces stabilizing the crystal structure.

Comment top

Soy isoflavone is secondary metabolite during its growth period. As it could be extracted from plants and have a similar structure of estrogen, people usually call it phytoestrogen. Due to the manifested biological activity, such as antitumor, cardiovascular protection, anti-oxidant, anti-inflammatory, osteoporosis improvement, dual effect on estrogen, isoflavone has been paid more attention in social and academic area (Wang & Murphy, 1994; Yoshio et al., 1989). During the development of our own isoflavone derivatives, the title compound, 1-(2-hydroxy-3,5-dimethoxyphenyl)ethanone, was prepared as an intermediate. The crystallographic analysis of the title compound described herein further confirms the molecular structures of the title compound and isoflavones.

In title compound, C10H12O4, all bond lengths and angles in the molecule are normal (Allen et al., 1987). All of atoms (C1—C10/O1—O4, except H atoms)lie in a plane with the largest deviation 0.061 (2) Å for C10. The intramolecular O3—H3···O4 hydrogen bonds generate S(6) ring motif (Bernstein et al., 1995). There is no classical intermolecular hydrogen bond found in the structure with only Van der Waals forces stabilizing the crystal.

Related literature top

For the biological activity of isoflavone, see: Wang & Murphy (1994); Yoshio et al. (1989). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the preparation, see: Aalten et al., (1989).

Experimental top

Under ice bath, a solution of 2-hydroxyacetophenone(100 g, 0.734 mol) in CH3OH(1.2L) was added N-bromosuccinimide(392 g, 2.203 mol). Then the reaction mixture was stirred overnight at room temperature. The mixture was added 1L water to form yellow precipitation then filtered. The filtered cake was washed with a little amount of CH3OH/H2O=1/1 to yield 80 g light yellow crystals, which is 1-(3,5-dibromo-2-hydroxyphenyl)ethanone. Under ice bath, sodium methoxide(73 g, 1.360 mol) was dissolved in CH3OH (1L). Then under nitrogen protection, 1-(3,5-dibromo-2-hydroxyphenyl)ethanone (80 g, 0.272 mol) and CuCl(27 g,0.272 mol) was added to the solution quickly followed by DMF(0.5L). The brown suspension was heated to 363 K overnight until LC—MS showed complete. The mixture was neutralized with concentrated HCl to pH5–6, filtered through celite. Then it was extracted with ethyl acetate three times. The combined organic phase was washed with brine, dried over Na2SO4 and evaporated in vacuo to obtain crude product. Pure title compound was obtained by column chromatography. Crystals suitable for X-ray diffraction were obtained through slow evaporation of a solution of the pure title compound in ethyl acetate/n-hexane (1/4 by volume)(Aalten et al., 1989).

Refinement top

All H atoms were found on difference maps, with C—H = 0.95 or 0.98, O—H = 0.84 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C, O) for the methyl and hydroxyl H atoms.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClear-SM Expert (Rigaku/MSC, 2009); data reduction: CrystalClear-SM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 40% probability level.
1-(2-Hydroxy-3,5-dimethoxyphenyl)ethanone top
Crystal data top
C10H12O4F(000) = 416
Mr = 196.20Dx = 1.408 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3101 reflections
a = 7.733 (4) Åθ = 1.4–27.9°
b = 8.059 (4) ŵ = 0.11 mm1
c = 14.851 (7) ÅT = 113 K
β = 91.416 (10)°Prism, colorless
V = 925.3 (7) Å30.26 × 0.20 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn724 CCD
diffractometer
2212 independent reflections
Radiation source: rotating anode1621 reflections with I > 2σ(I)
multilayerRint = 0.036
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 2.7°
ω and φ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
k = 1010
Tmin = 0.972, Tmax = 0.987l = 1919
10288 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
2212 reflections(Δ/σ)max = 0.003
131 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H12O4V = 925.3 (7) Å3
Mr = 196.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.733 (4) ŵ = 0.11 mm1
b = 8.059 (4) ÅT = 113 K
c = 14.851 (7) Å0.26 × 0.20 × 0.12 mm
β = 91.416 (10)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
2212 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
1621 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.987Rint = 0.036
10288 measured reflectionsθmax = 27.9°
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.27 e Å3
S = 1.04Δρmin = 0.25 e Å3
2212 reflectionsAbsolute structure: ?
131 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.91994 (10)0.94416 (10)0.30478 (5)0.0250 (2)
O21.34013 (9)0.60797 (9)0.45862 (5)0.0214 (2)
O31.15055 (10)0.58744 (9)0.60098 (5)0.0211 (2)
H31.07790.58170.64200.032*
O40.86931 (10)0.65890 (10)0.68062 (5)0.0244 (2)
C10.75834 (15)1.03005 (14)0.30265 (8)0.0231 (3)
H1A0.66360.94960.30570.035*
H1B0.74681.09370.24660.035*
H1C0.75371.10580.35420.035*
C20.96176 (14)0.85633 (13)0.38174 (7)0.0183 (2)
C31.12493 (14)0.77847 (12)0.37976 (7)0.0189 (2)
H3A1.19380.78800.32790.023*
C41.18437 (14)0.68864 (13)0.45298 (7)0.0175 (2)
C51.08271 (13)0.67472 (12)0.53088 (7)0.0169 (2)
C60.92014 (13)0.75150 (12)0.53199 (7)0.0171 (2)
C70.85964 (14)0.84275 (13)0.45606 (7)0.0185 (2)
H70.74920.89430.45640.022*
C81.44819 (15)0.62000 (15)0.38132 (8)0.0248 (3)
H8A1.38850.57010.32900.037*
H8B1.55710.56110.39350.037*
H8C1.47240.73700.36880.037*
C90.81400 (14)0.73530 (13)0.61314 (7)0.0196 (2)
C100.63652 (15)0.81151 (15)0.61438 (8)0.0261 (3)
H10A0.58410.78920.67260.039*
H10B0.56420.76330.56600.039*
H10C0.64560.93160.60540.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0233 (4)0.0318 (4)0.0201 (4)0.0054 (3)0.0026 (3)0.0080 (3)
O20.0161 (4)0.0290 (4)0.0192 (4)0.0037 (3)0.0035 (3)0.0023 (3)
O30.0202 (4)0.0268 (4)0.0163 (4)0.0024 (3)0.0012 (3)0.0028 (3)
O40.0248 (4)0.0308 (5)0.0177 (4)0.0009 (3)0.0024 (3)0.0011 (3)
C10.0231 (6)0.0236 (6)0.0223 (6)0.0024 (5)0.0021 (5)0.0020 (5)
C20.0206 (6)0.0183 (5)0.0160 (5)0.0019 (4)0.0008 (4)0.0005 (4)
C30.0192 (6)0.0207 (5)0.0170 (5)0.0025 (4)0.0040 (4)0.0008 (4)
C40.0154 (5)0.0181 (5)0.0192 (5)0.0006 (4)0.0010 (4)0.0029 (4)
C50.0196 (6)0.0165 (5)0.0146 (5)0.0017 (4)0.0013 (4)0.0012 (4)
C60.0185 (6)0.0172 (5)0.0158 (5)0.0020 (4)0.0022 (4)0.0027 (4)
C70.0165 (5)0.0186 (5)0.0204 (6)0.0000 (4)0.0003 (4)0.0020 (4)
C80.0189 (6)0.0310 (6)0.0249 (6)0.0022 (5)0.0081 (5)0.0031 (5)
C90.0217 (6)0.0191 (5)0.0181 (5)0.0024 (4)0.0012 (4)0.0034 (4)
C100.0238 (6)0.0314 (6)0.0234 (6)0.0046 (5)0.0060 (5)0.0008 (5)
Geometric parameters (Å, °) top
O1—C21.3762 (14)C3—H3A0.9500
O1—C11.4283 (14)C4—C51.4192 (15)
O2—C41.3695 (13)C5—C61.4016 (15)
O2—C81.4398 (14)C6—C71.4161 (16)
O3—C51.3516 (13)C6—C91.4806 (16)
O3—H30.8400C7—H70.9500
O4—C91.2430 (14)C8—H8A0.9800
C1—H1A0.9800C8—H8B0.9800
C1—H1B0.9800C8—H8C0.9800
C1—H1C0.9800C9—C101.5041 (16)
C2—C71.3773 (16)C10—H10A0.9800
C2—C31.4102 (16)C10—H10B0.9800
C3—C41.3758 (16)C10—H10C0.9800
C2—O1—C1117.07 (9)C5—C6—C7119.91 (9)
C4—O2—C8116.50 (9)C5—C6—C9119.08 (10)
C5—O3—H3109.5C7—C6—C9121.00 (10)
O1—C1—H1A109.5C2—C7—C6119.65 (10)
O1—C1—H1B109.5C2—C7—H7120.2
H1A—C1—H1B109.5C6—C7—H7120.2
O1—C1—H1C109.5O2—C8—H8A109.5
H1A—C1—H1C109.5O2—C8—H8B109.5
H1B—C1—H1C109.5H8A—C8—H8B109.5
O1—C2—C7125.37 (10)O2—C8—H8C109.5
O1—C2—C3113.80 (9)H8A—C8—H8C109.5
C7—C2—C3120.83 (10)H8B—C8—H8C109.5
C4—C3—C2119.95 (10)O4—C9—C6120.88 (11)
C4—C3—H3A120.0O4—C9—C10119.23 (10)
C2—C3—H3A120.0C6—C9—C10119.89 (10)
O2—C4—C3125.05 (9)C9—C10—H10A109.5
O2—C4—C5114.62 (9)C9—C10—H10B109.5
C3—C4—C5120.32 (10)H10A—C10—H10B109.5
O3—C5—C6123.49 (9)C9—C10—H10C109.5
O3—C5—C4117.18 (10)H10A—C10—H10C109.5
C6—C5—C4119.33 (10)H10B—C10—H10C109.5
C1—O1—C2—C70.96 (15)O3—C5—C6—C7179.09 (9)
C1—O1—C2—C3178.46 (9)C4—C5—C6—C70.45 (15)
O1—C2—C3—C4178.95 (9)O3—C5—C6—C91.01 (15)
C7—C2—C3—C40.50 (16)C4—C5—C6—C9179.46 (9)
C8—O2—C4—C30.15 (15)O1—C2—C7—C6178.46 (10)
C8—O2—C4—C5179.49 (9)C3—C2—C7—C60.92 (16)
C2—C3—C4—O2179.97 (9)C5—C6—C7—C20.44 (16)
C2—C3—C4—C50.41 (16)C9—C6—C7—C2179.66 (9)
O2—C4—C5—O30.96 (14)C5—C6—C9—O42.04 (15)
C3—C4—C5—O3178.69 (9)C7—C6—C9—O4178.05 (10)
O2—C4—C5—C6179.47 (9)C5—C6—C9—C10177.77 (10)
C3—C4—C5—C60.87 (15)C7—C6—C9—C102.13 (15)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.841.832.5666 (14)145.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.841.832.5666 (14)145.
Acknowledgements top

This study was supported by the National Natural Science Foundation of China (grant No. 20972112), the Research Fund for the Doctoral Program of Higher Education of China (grant No. 20091202110010), the Key Program of Tianjin Municipal Natural Science Foundation (grant No.09JCZDJC21600), as well by Beijing Honghui Meditech Co. Ltd.

references
References top

Aalten, H. L., Van Koten, G., Grove, D. M., Kuilman, T., Piekstra, O. G., Hulshof, L. A. & Sheldon, R. A. (1989). Tetrahedron, 45, 5565–5578.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, H. & Murphy, P. A. (1994). J. Agric. Food Chem. 42, 1666–1673.

Yoshio, I., Kenji, Y., Yukinori, T. & Shoshiro, N. (1989). J. Antibiot. 42, 1523–1525.