supplementary materials


hy2491 scheme

Acta Cryst. (2012). E68, m10    [ doi:10.1107/S1600536811051063 ]

Tetraaquabis[4-(4H-1,2,4-triazol-4-yl)benzoato-[kappa]N1]nickel(II) decahydrate

W. Sun, Y. Yu, G. Wang and X. Wu

Abstract top

In the title compound, [Ni(C9H6N3O2)2(H2O)4]·10H2O, the NiII ion lies on a twofold rotation axis and displays a slightly distorted octahedral geometry defined by two N atoms from two monodentate 4-(1,2,4-triazol-4-yl)benzoate ligands and four water molecules, two of which also lie on the twofold rotation axis. In the crystal, the complex molecules and uncoordinated water molecules are linked via intermolecular O-H...N and O-H...O hydrogen bonds, forming a three-dimensional supramolecular network. [pi]-[pi] interactions between the benzene rings provide additional stability of the crystal packing [centroid-centroid distance = 3.792 (2) Å].

Comment top

Recently, the chemists have devoted themselves to design and synthesize coordination polymers, not only due to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence, host–guest chemistry etc, but also for their aesthetic and often complicated architectures and topologies (Su et al., 2010; Wang et al., 2009). It is well known that carboxylic acids are excellent building blocks for the construction of coordination polymers because the carboxylate groups may induce core aggregation and link these discrete clusters into an extended framework by virtue of its bridging ability (Rowsell & Yaghi, 2005; Zhang & Chen, 2008). Taking these into account, we chose a carboxylate ligand, 4-(1,2,4-triazol-4-yl)benzoic acid, generating the title compound, which is reported here.

In the title compound, the NiII ion lies on a twofold rotation axis and displays a slightly distorted octahedral geometry defined by two N atoms from two 4-(1,2,4-triazol-4-yl)benzoate ligands and four water molecules, two of which lie on the twofold rotation axis (Fig. 1). The bond lengths and angles are in a normal range (Cui & Zhao, 2011). In the crystal, the complex molecules and uncoordinated water molecules are linked via intermolecular O—H···N and O—H···O hydrogen bonds, forming a three-dimensional supramolecular network (Fig. 2). ππ interactions between the benzene rings, with a centroid–centroid distance of 3.792 (2) Å, provide additional stability of the crystal packing.

Related literature top

For general background to the applications and structures of metal coordination polymers, see: Rowsell & Yaghi (2005); Su et al. (2010); Wang et al. (2009); Zhang & Chen (2008). For a related structure, see: Cui & Zhao (2011).

Experimental top

The synthesis was performed under hydrothermal conditions. A mixture of Ni(CH3COO)2.4H2O (0.2 mmol, 0.050 g), 4-(1,2,4-triazol-4-yl)benzoic acid (0.4 mmol, 0.075 g), NaOH (0.4 mmol, 0.016 g) and H2O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h. After the mixture was cooled to 298 K, pink crystals of the title compound were obtained from the reaction.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were located in a difference Fourier map and refined with O—H distance restraints of 0.85 (2) Å and with Uiso(H) = 0.054 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structute of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1-x, y, 3/2-z.]
[Figure 2] Fig. 2. View of the three-dimensional structure of the title compound built by hydrogen bonds (dashed lines).
Tetraaquabis[4-(4H-1,2,4-triazol-4-yl)benzoato-κN1]nickel(II) decahydrate top
Crystal data top
[Ni(C9H6N3O2)2(H2O)4]·10H2OF(000) = 1448
Mr = 687.25Dx = 1.449 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3079 reflections
a = 25.840 (3) Åθ = 1.0–25.9°
b = 7.8664 (8) ŵ = 0.70 mm1
c = 16.8013 (17) ÅT = 293 K
β = 112.712 (1)°Block, pink
V = 3150.3 (6) Å30.22 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3079 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
graphiteRint = 0.057
φ and ω scansθmax = 25.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3131
Tmin = 0.83, Tmax = 0.90k = 69
8290 measured reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0451P)2 + 2.4003P]
where P = (Fo2 + 2Fc2)/3
3079 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.55 e Å3
14 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Ni(C9H6N3O2)2(H2O)4]·10H2OV = 3150.3 (6) Å3
Mr = 687.25Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.840 (3) ŵ = 0.70 mm1
b = 7.8664 (8) ÅT = 293 K
c = 16.8013 (17) Å0.22 × 0.20 × 0.19 mm
β = 112.712 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3079 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2273 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.90Rint = 0.057
8290 measured reflectionsθmax = 25.9°
Refinement top
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119Δρmax = 0.55 e Å3
S = 1.04Δρmin = 0.63 e Å3
3079 reflectionsAbsolute structure: ?
238 parametersFlack parameter: ?
14 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.59822 (8)0.75000.01918 (19)
C10.83480 (12)0.4306 (4)1.04342 (19)0.0186 (7)
C20.79863 (12)0.3835 (4)0.96082 (19)0.0200 (7)
H20.81260.32360.92570.024*
C30.74225 (13)0.4242 (4)0.93015 (19)0.0205 (7)
H30.71820.38900.87550.025*
C40.72201 (12)0.5180 (4)0.98169 (19)0.0163 (7)
C50.75769 (13)0.5702 (4)1.0635 (2)0.0209 (7)
H50.74410.63511.09750.025*
C60.81360 (12)0.5246 (4)1.0939 (2)0.0194 (7)
H60.83740.55751.14910.023*
C70.89538 (13)0.3748 (4)1.0778 (2)0.0196 (7)
C80.62534 (12)0.5537 (4)0.86818 (19)0.0192 (7)
H80.63340.52220.82090.023*
C90.63313 (13)0.6112 (4)0.9971 (2)0.0231 (7)
H90.64800.62751.05650.028*
N10.66358 (10)0.5587 (3)0.95053 (15)0.0170 (6)
N20.57580 (10)0.5986 (3)0.86385 (15)0.0193 (6)
N30.58082 (11)0.6353 (4)0.94733 (16)0.0230 (7)
O10.92384 (9)0.3974 (3)1.15821 (13)0.0218 (5)
O20.91424 (9)0.3070 (3)1.02773 (14)0.0302 (6)
O30.50000.8594 (4)0.75000.0294 (8)
O40.50000.3349 (4)0.75000.0228 (7)
O50.54970 (9)0.5800 (3)0.67831 (14)0.0211 (5)
O60.70477 (12)0.6665 (4)0.74921 (19)0.0430 (7)
O70.60752 (10)0.8271 (3)0.64103 (15)0.0280 (6)
O80.52147 (10)0.3127 (3)0.56372 (15)0.0255 (6)
O90.60244 (10)0.1461 (3)0.69923 (16)0.0315 (6)
O100.69525 (11)0.3274 (4)0.70686 (17)0.0363 (7)
H3A0.5254 (13)0.921 (4)0.784 (2)0.054*
H4A0.5231 (14)0.265 (4)0.783 (2)0.054*
H5A0.5411 (17)0.510 (4)0.639 (2)0.054*
H5B0.5653 (16)0.656 (4)0.661 (3)0.054*
H6A0.6758 (12)0.715 (5)0.718 (2)0.054*
H6B0.7026 (18)0.562 (3)0.738 (3)0.054*
H7A0.6022 (17)0.833 (5)0.5885 (14)0.054*
H7B0.6041 (18)0.929 (3)0.654 (3)0.054*
H8A0.5304 (17)0.319 (6)0.5218 (19)0.054*
H8B0.4879 (10)0.279 (5)0.550 (3)0.054*
H9A0.5962 (17)0.146 (6)0.7445 (18)0.054*
H9B0.5732 (12)0.191 (5)0.662 (2)0.054*
H10A0.7237 (12)0.268 (5)0.727 (2)0.054*
H10B0.6695 (14)0.275 (5)0.712 (3)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0147 (3)0.0216 (3)0.0196 (3)0.0000.0049 (2)0.000
C10.0117 (15)0.0238 (18)0.0189 (16)0.0005 (13)0.0044 (13)0.0017 (14)
C20.0179 (17)0.0281 (19)0.0144 (16)0.0013 (14)0.0069 (13)0.0005 (14)
C30.0155 (16)0.0305 (19)0.0121 (15)0.0005 (14)0.0014 (12)0.0006 (14)
C40.0105 (15)0.0197 (16)0.0172 (16)0.0021 (13)0.0035 (13)0.0023 (14)
C50.0188 (17)0.0258 (19)0.0174 (16)0.0041 (14)0.0062 (13)0.0042 (14)
C60.0153 (16)0.0223 (17)0.0170 (16)0.0007 (13)0.0024 (13)0.0029 (14)
C70.0145 (16)0.0217 (18)0.0214 (17)0.0004 (13)0.0057 (14)0.0031 (15)
C80.0144 (16)0.0263 (18)0.0148 (15)0.0000 (13)0.0034 (13)0.0012 (14)
C90.0170 (17)0.037 (2)0.0146 (16)0.0034 (15)0.0055 (13)0.0029 (15)
N10.0123 (13)0.0229 (15)0.0136 (13)0.0014 (11)0.0026 (10)0.0014 (11)
N20.0151 (13)0.0272 (15)0.0155 (13)0.0008 (12)0.0058 (11)0.0021 (12)
N30.0144 (14)0.0370 (17)0.0149 (14)0.0017 (12)0.0026 (11)0.0043 (13)
O10.0167 (11)0.0254 (12)0.0180 (11)0.0023 (10)0.0010 (9)0.0010 (10)
O20.0169 (13)0.0498 (17)0.0221 (13)0.0123 (12)0.0056 (10)0.0020 (12)
O30.0210 (19)0.0179 (18)0.032 (2)0.0000.0087 (15)0.000
O40.0194 (18)0.0150 (17)0.0248 (19)0.0000.0015 (14)0.000
O50.0195 (12)0.0248 (13)0.0213 (12)0.0055 (10)0.0106 (10)0.0034 (10)
O60.0341 (17)0.0381 (17)0.0489 (18)0.0012 (14)0.0073 (14)0.0007 (15)
O70.0318 (14)0.0289 (14)0.0249 (13)0.0017 (12)0.0126 (12)0.0015 (12)
O80.0190 (13)0.0378 (15)0.0209 (12)0.0077 (11)0.0090 (10)0.0023 (11)
O90.0255 (14)0.0388 (15)0.0315 (15)0.0064 (12)0.0123 (12)0.0047 (13)
O100.0282 (16)0.0390 (17)0.0373 (16)0.0016 (12)0.0080 (13)0.0061 (13)
Geometric parameters (Å, °) top
Ni1—O32.054 (3)C8—H80.9300
Ni1—O42.071 (3)C9—N31.300 (4)
Ni1—O52.077 (2)C9—N11.370 (4)
Ni1—N22.145 (2)C9—H90.9300
C1—C61.387 (4)N2—N31.388 (3)
C1—C21.391 (4)O3—H3A0.836 (18)
C1—C71.510 (4)O4—H4A0.840 (18)
C2—C31.382 (4)O5—H5A0.822 (19)
C2—H20.9300O5—H5B0.835 (19)
C3—C41.385 (4)O6—H6A0.824 (19)
C3—H30.9300O6—H6B0.838 (19)
C4—C51.389 (4)O7—H7A0.840 (18)
C4—N11.430 (4)O7—H7B0.844 (19)
C5—C61.381 (4)O8—H8A0.823 (18)
C5—H50.9300O8—H8B0.848 (19)
C6—H60.9300O9—H9A0.836 (19)
C7—O21.243 (4)O9—H9B0.847 (19)
C7—O11.277 (4)O10—H10A0.824 (19)
C8—N21.303 (4)O10—H10B0.817 (19)
C8—N11.355 (4)
O3—Ni1—O4180.000 (2)C5—C6—C1121.1 (3)
O3—Ni1—O5i93.97 (6)C5—C6—H6119.5
O4—Ni1—O5i86.03 (7)C1—C6—H6119.5
O3—Ni1—O593.97 (7)O2—C7—O1124.0 (3)
O4—Ni1—O586.03 (7)O2—C7—C1119.0 (3)
O5i—Ni1—O5172.07 (13)O1—C7—C1116.9 (3)
O3—Ni1—N289.93 (7)N2—C8—N1111.3 (3)
O4—Ni1—N290.07 (7)N2—C8—H8124.4
O5i—Ni1—N292.24 (9)N1—C8—H8124.4
O5—Ni1—N287.77 (9)N3—C9—N1111.2 (3)
O3—Ni1—N2i89.93 (7)N3—C9—H9124.4
O4—Ni1—N2i90.07 (7)N1—C9—H9124.4
O5i—Ni1—N2i87.77 (9)C8—N1—C9103.8 (3)
O5—Ni1—N2i92.24 (9)C8—N1—C4128.2 (3)
N2—Ni1—N2i179.85 (16)C9—N1—C4128.1 (2)
C6—C1—C2118.7 (3)C8—N2—N3107.1 (2)
C6—C1—C7121.1 (3)C8—N2—Ni1126.1 (2)
C2—C1—C7120.1 (3)N3—N2—Ni1126.73 (18)
C3—C2—C1121.0 (3)C9—N3—N2106.7 (2)
C3—C2—H2119.5Ni1—O3—H3A125 (3)
C1—C2—H2119.5Ni1—O4—H4A131 (3)
C2—C3—C4119.3 (3)Ni1—O5—H5A118 (3)
C2—C3—H3120.4Ni1—O5—H5B130 (3)
C4—C3—H3120.4H5A—O5—H5B103 (4)
C3—C4—C5120.6 (3)H6A—O6—H6B110 (4)
C3—C4—N1119.4 (3)H7A—O7—H7B103 (4)
C5—C4—N1120.0 (3)H8A—O8—H8B112 (4)
C6—C5—C4119.3 (3)H9A—O9—H9B103 (4)
C6—C5—H5120.4H10A—O10—H10B108 (4)
C4—C5—H5120.4
C6—C1—C2—C32.1 (5)C3—C4—N1—C817.2 (5)
C7—C1—C2—C3175.9 (3)C5—C4—N1—C8163.8 (3)
C1—C2—C3—C42.0 (5)C3—C4—N1—C9162.5 (3)
C2—C3—C4—C50.3 (5)C5—C4—N1—C916.5 (5)
C2—C3—C4—N1179.3 (3)N1—C8—N2—N30.1 (4)
C3—C4—C5—C61.3 (5)N1—C8—N2—Ni1176.2 (2)
N1—C4—C5—C6177.7 (3)O3—Ni1—N2—C8109.7 (3)
C4—C5—C6—C11.2 (5)O4—Ni1—N2—C870.3 (3)
C2—C1—C6—C50.4 (5)O5i—Ni1—N2—C8156.4 (3)
C7—C1—C6—C5177.5 (3)O5—Ni1—N2—C815.7 (3)
C6—C1—C7—O2172.3 (3)O3—Ni1—N2—N375.0 (2)
C2—C1—C7—O29.8 (5)O4—Ni1—N2—N3105.0 (2)
C6—C1—C7—O19.3 (5)O5i—Ni1—N2—N319.0 (3)
C2—C1—C7—O1168.6 (3)O5—Ni1—N2—N3169.0 (3)
N2—C8—N1—C90.1 (4)N1—C9—N3—N20.4 (4)
N2—C8—N1—C4179.7 (3)C8—N2—N3—C90.3 (4)
N3—C9—N1—C80.3 (4)Ni1—N2—N3—C9176.4 (2)
N3—C9—N1—C4179.5 (3)
Symmetry codes: (i) −x+1, y, −z+3/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1ii0.84 (2)1.93 (2)2.751 (3)167 (4)
O4—H4A···O1iii0.84 (2)1.86 (2)2.692 (3)172 (4)
O5—H5A···O80.82 (2)1.94 (2)2.752 (3)169 (4)
O5—H5B···O70.83 (2)1.84 (2)2.670 (3)171 (4)
O6—H6A···O70.82 (2)1.95 (2)2.773 (4)178 (4)
O6—H6B···O100.84 (2)1.91 (3)2.747 (4)177 (6)
O7—H7A···O2iv0.84 (2)1.84 (2)2.674 (3)170 (4)
O7—H7B···O9v0.84 (2)1.88 (2)2.715 (4)171 (4)
O8—H8A···N3vi0.82 (2)2.16 (2)2.943 (3)160 (4)
O8—H8B···O2vii0.85 (2)1.92 (2)2.763 (3)175 (4)
O9—H9A···O1iii0.84 (2)1.93 (2)2.751 (3)169 (4)
O9—H9B···O80.85 (2)1.93 (2)2.757 (3)164 (4)
Symmetry codes: (ii) −x+3/2, −y+3/2, −z+2; (iii) −x+3/2, −y+1/2, −z+2; (iv) −x+3/2, y+1/2, −z+3/2; (v) x, y+1, z; (vi) x, −y+1, z−1/2; (vii) x−1/2, −y+1/2, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.84 (2)1.93 (2)2.751 (3)167 (4)
O4—H4A···O1ii0.84 (2)1.86 (2)2.692 (3)172 (4)
O5—H5A···O80.82 (2)1.94 (2)2.752 (3)169 (4)
O5—H5B···O70.83 (2)1.84 (2)2.670 (3)171 (4)
O6—H6A···O70.82 (2)1.95 (2)2.773 (4)178 (4)
O6—H6B···O100.84 (2)1.91 (3)2.747 (4)177 (6)
O7—H7A···O2iii0.84 (2)1.84 (2)2.674 (3)170 (4)
O7—H7B···O9iv0.84 (2)1.88 (2)2.715 (4)171 (4)
O8—H8A···N3v0.82 (2)2.16 (2)2.943 (3)160 (4)
O8—H8B···O2vi0.85 (2)1.92 (2)2.763 (3)175 (4)
O9—H9A···O1ii0.84 (2)1.93 (2)2.751 (3)169 (4)
O9—H9B···O80.85 (2)1.93 (2)2.757 (3)164 (4)
Symmetry codes: (i) −x+3/2, −y+3/2, −z+2; (ii) −x+3/2, −y+1/2, −z+2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) x, y+1, z; (v) x, −y+1, z−1/2; (vi) x−1/2, −y+1/2, z−1/2.
Acknowledgements top

The authors thank Jilin University for supporting this work.

references
References top

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cui, F.-H. & Zhao, P.-Z. (2011). Acta Cryst. E67, m1341–m1342.

Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Su, S.-Q., Guo, Z.-Y., Li, G.-H., Deng, R.-P., Song, S.-Y., Qin, C., Pan, C.-L., Guo, H.-D., Gao, F., Wang, S. & Zhang, H.-J. (2010). Dalton Trans. 39, 9123–9130.

Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.

Zhang, J.-P. & Chen, X.-M. (2008). J. Am. Chem. Soc. 130, 6010–6017.