supplementary materials


hy2492 scheme

Acta Cryst. (2012). E68, m50    [ doi:10.1107/S1600536811053050 ]

Bis[1,1'-(1,3-phenylenedimethylene)di(1H-imidazol-3-ium)] [beta]-octamolybdate

X.-D. Wang, G.-F. Hou, Y.-H. Yu and J.-S. Gao

Abstract top

In the title compound, (C14H16N4)2[Mo8O26], the [beta]-octamolybdate anion is centrosymmetric. N-H...O hydrogen bonds link the diimidazolium cations and the polyoxidoanions into a chain structure along [100]. [pi]-[pi] interactions between the imidazole rings and between the imidazole and benzene rings [centroid-centroid distances = 3.611 (2) and 3.689 (3) Å, respectively] connect the chains.

Comment top

The synthesis and characterization of coordination networks based on the idea of self-assembly of specifically designed building blocks have been an area of rapid growth in recent years. In the last decades, more and more attention has been paid to the rational design and assembly of new polyoxometalate(POM)-based organic-inorganic hybrid compounds due to their structural diversities and abundant potential applications in catalysis, ion exchange, sorption and magnetism (Xie et al., 2011). Octamolybdate family with a variety of structural isomers is a kind of important POMs building blocks (Xu et al., 1999). The title compound was synthesized at a low pH value condition, as an unexpected product during the process of preparing POM-based Cu(II)–ligand complex. We report its structure here.

The asymmertric unit of the title compound contains one half of β-[Mo8O26]4- polyoxoanion and one (1,3-phenylenedimethylene)-di-1H-imidazolium cation (Fig. 1). The polyoxoanion is centrosymmetric. N—H···O hydrogen bonds link the cations and polyoxoanions into a chain structure along [1 0 0] (Fig. 2, Table 1). ππ interactions between the imidazole rings and between the imidazole and benzene rings [centroid–centroid distances = 3.611 (2) and 3.689 (3) Å] connect the chains.

Related literature top

For general background to polyoxidometalate-based organic-inorganic hybrid compounds, see: Xie et al. (2011); Xu et al. (1999). For the synthesis of the ligand, see: Yang et al. (2006).

Experimental top

The 1,3-bis(imidazol-l-yl-methyl)benzene (bimb) ligand was synthesized following the literature method (Yang et al., 2006). The title compound was synthesized by mixing bimb (0.101 g, 0.5 mmol), Cu(NO3)2.4H2O (0.102 g, 0.05 mmol), sodium molybdate (0.505 g, 2.5 mmol), H2O (8 ml) and ethanol (2 ml) and stirring at room temperature for 10 min. The pH value of the mixture was adjusted to 2.0 with 1M HCl, and then the mixture was sealed in a Teflon-lined autoclave and heated at 125°C for 4 days. After slow cooling to room temperature, black block crystals were obtained in 22% yield based on Mo atoms.

Refinement top

The electron density residual peak (1.12) and hole (-1.30) are all around of Mo4 atom with distances of 0.71 and 0.81 Å, respectively. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic) and 0.97 (methylene) Å and with Uiso(H) = 1.2Ueq(C). H atoms bound to N atoms were located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. Dashed lines denote hydrogen bonds. [Symmetry codes: (i) 1-x, 2-y, 2-z; (ii) x, 1+y, z; (iii) -1+x, 1+y, z.]
[Figure 2] Fig. 2. A view of the hydrogen-bonded chain structure along [1 0 0]. Dashed lines denote hydrogen bonds.
Bis[1,1'-(1,3-phenylenedimethylene)di(1H-imidazol-3-ium)] β-octamolybdate top
Crystal data top
(C14H16N4)2[Mo8O26]F(000) = 1600
Mr = 1664.14Dx = 2.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17887 reflections
a = 12.163 (2) Åθ = 3.1–27.5°
b = 12.785 (3) ŵ = 2.20 mm1
c = 14.937 (3) ÅT = 293 K
β = 96.82 (3)°Block, colorless
V = 2306.3 (8) Å30.12 × 0.10 × 0.10 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5261 independent reflections
Radiation source: fine-focus sealed tube4579 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1515
Tmin = 0.780, Tmax = 0.809k = 1615
21595 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0219P)2 + 3.6973P]
where P = (Fo2 + 2Fc2)/3
5261 reflections(Δ/σ)max = 0.003
324 parametersΔρmax = 1.12 e Å3
2 restraintsΔρmin = 1.30 e Å3
Crystal data top
(C14H16N4)2[Mo8O26]V = 2306.3 (8) Å3
Mr = 1664.14Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.163 (2) ŵ = 2.20 mm1
b = 12.785 (3) ÅT = 293 K
c = 14.937 (3) Å0.12 × 0.10 × 0.10 mm
β = 96.82 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5261 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4579 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.809Rint = 0.032
21595 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057Δρmax = 1.12 e Å3
S = 1.01Δρmin = 1.30 e Å3
5261 reflectionsAbsolute structure: ?
324 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6205 (3)0.5883 (3)1.0719 (2)0.0442 (9)
H10.60320.62161.12370.053*
C20.6426 (3)0.6343 (3)0.9957 (2)0.0411 (8)
H20.64430.70590.98500.049*
C30.6529 (3)0.4656 (3)0.9766 (3)0.0414 (8)
H30.66230.40030.95120.050*
C40.6943 (3)0.5749 (3)0.8462 (2)0.0375 (8)
H4A0.67470.64560.82690.045*
H4B0.65420.52680.80390.045*
C50.8175 (3)0.5588 (3)0.8459 (2)0.0334 (7)
C60.8932 (4)0.6252 (3)0.8933 (3)0.0574 (11)
H60.86870.68200.92450.069*
C71.0057 (4)0.6069 (4)0.8944 (4)0.0722 (15)
H71.05640.65060.92750.087*
C81.0431 (3)0.5248 (4)0.8469 (4)0.0638 (13)
H81.11880.51400.84730.077*
C90.9687 (3)0.4581 (3)0.7984 (3)0.0416 (9)
C100.8560 (3)0.4767 (3)0.7982 (2)0.0332 (7)
H100.80540.43280.76520.040*
C111.0073 (3)0.3659 (3)0.7484 (3)0.0517 (11)
H11A0.95290.34990.69740.062*
H11B1.07640.38330.72540.062*
C120.9427 (4)0.2172 (4)0.8436 (4)0.0673 (14)
H120.86700.23000.83420.081*
C130.9922 (5)0.1420 (4)0.8937 (4)0.0722 (15)
H130.95810.09200.92640.087*
C141.1198 (3)0.2305 (3)0.8354 (3)0.0503 (10)
H141.18820.25210.82020.060*
Mo10.547848 (19)0.90288 (2)1.084672 (17)0.02207 (6)
Mo20.30667 (2)1.04699 (2)1.134611 (18)0.02643 (7)
Mo30.27124 (2)0.86907 (2)0.973110 (19)0.02576 (7)
Mo40.45286 (2)0.80953 (3)0.81444 (2)0.03626 (8)
N10.6622 (2)0.5573 (2)0.93667 (18)0.0312 (6)
N20.6281 (3)0.4835 (3)1.0589 (2)0.0463 (8)
N31.0240 (2)0.2736 (3)0.8073 (2)0.0425 (7)
N41.1028 (4)0.1517 (3)0.8884 (3)0.0622 (10)
O10.6277 (2)0.9749 (2)1.01029 (18)0.0472 (7)
O20.6373 (2)0.8237 (2)1.14858 (18)0.0477 (7)
O30.48333 (18)0.9874 (2)1.15775 (16)0.0372 (6)
O40.2810 (2)1.0400 (2)1.24323 (16)0.0439 (6)
O50.1925 (2)1.1056 (2)1.08042 (19)0.0500 (7)
O60.27884 (17)0.90605 (17)1.09648 (15)0.0298 (5)
O70.45232 (19)0.82404 (19)1.01803 (19)0.0429 (6)
O80.1530 (2)0.9344 (2)0.93423 (17)0.0417 (6)
O90.2328 (2)0.7420 (2)0.97568 (19)0.0439 (6)
O100.33456 (19)0.8728 (2)0.85883 (16)0.0361 (5)
O110.6000 (2)0.82712 (18)0.86168 (17)0.0371 (5)
O120.4326 (2)0.6786 (2)0.8263 (2)0.0548 (7)
O130.4385 (3)0.8367 (2)0.70317 (19)0.0555 (7)
H210.619 (4)0.433 (3)1.099 (2)0.066 (14)*
H411.155 (3)0.107 (4)0.911 (4)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.052 (2)0.054 (2)0.0275 (18)0.0126 (18)0.0089 (15)0.0002 (17)
C20.058 (2)0.0311 (18)0.035 (2)0.0116 (16)0.0088 (16)0.0002 (15)
C30.051 (2)0.0339 (19)0.039 (2)0.0056 (16)0.0056 (16)0.0060 (15)
C40.0397 (19)0.046 (2)0.0268 (17)0.0124 (15)0.0046 (14)0.0046 (15)
C50.0370 (18)0.0339 (18)0.0295 (17)0.0007 (14)0.0049 (13)0.0056 (14)
C60.062 (3)0.047 (2)0.064 (3)0.013 (2)0.012 (2)0.013 (2)
C70.048 (3)0.074 (3)0.093 (4)0.028 (2)0.001 (2)0.012 (3)
C80.031 (2)0.082 (4)0.079 (3)0.004 (2)0.010 (2)0.010 (3)
C90.0353 (19)0.052 (2)0.039 (2)0.0081 (16)0.0115 (15)0.0141 (17)
C100.0288 (16)0.043 (2)0.0277 (17)0.0024 (14)0.0033 (12)0.0024 (14)
C110.049 (2)0.063 (3)0.047 (2)0.022 (2)0.0226 (18)0.016 (2)
C120.044 (2)0.076 (3)0.087 (4)0.012 (2)0.025 (2)0.026 (3)
C130.085 (4)0.059 (3)0.081 (4)0.021 (3)0.044 (3)0.024 (3)
C140.038 (2)0.056 (3)0.057 (3)0.0151 (18)0.0060 (18)0.006 (2)
Mo10.02070 (12)0.02499 (13)0.02034 (12)0.00065 (9)0.00169 (9)0.00309 (10)
Mo20.02634 (13)0.03154 (14)0.02250 (13)0.00129 (10)0.00740 (10)0.00118 (11)
Mo30.02085 (12)0.02662 (13)0.03005 (15)0.00019 (10)0.00399 (10)0.00093 (11)
Mo40.03172 (15)0.04101 (17)0.03793 (17)0.01049 (12)0.01196 (12)0.01119 (13)
N10.0332 (14)0.0329 (15)0.0278 (14)0.0086 (11)0.0043 (11)0.0027 (11)
N20.0480 (19)0.052 (2)0.0386 (18)0.0027 (15)0.0048 (14)0.0181 (15)
N30.0321 (15)0.0544 (19)0.0423 (18)0.0143 (14)0.0101 (13)0.0102 (15)
N40.072 (3)0.057 (2)0.057 (2)0.030 (2)0.005 (2)0.0138 (19)
O10.0685 (18)0.0394 (14)0.0395 (15)0.0240 (13)0.0304 (13)0.0137 (11)
O20.0417 (14)0.0540 (17)0.0440 (16)0.0217 (12)0.0092 (11)0.0005 (13)
O30.0266 (12)0.0462 (14)0.0375 (14)0.0049 (10)0.0015 (9)0.0123 (11)
O40.0429 (14)0.0641 (18)0.0268 (13)0.0067 (12)0.0124 (10)0.0035 (12)
O50.0521 (16)0.0485 (16)0.0464 (16)0.0204 (13)0.0062 (12)0.0066 (13)
O60.0279 (11)0.0316 (12)0.0299 (12)0.0047 (9)0.0038 (9)0.0041 (9)
O70.0268 (12)0.0363 (14)0.0635 (18)0.0056 (10)0.0038 (11)0.0175 (12)
O80.0347 (13)0.0524 (16)0.0370 (14)0.0147 (11)0.0001 (10)0.0028 (12)
O90.0382 (13)0.0332 (13)0.0588 (17)0.0100 (10)0.0004 (12)0.0036 (12)
O100.0316 (12)0.0479 (15)0.0290 (12)0.0017 (10)0.0045 (9)0.0064 (11)
O110.0449 (14)0.0251 (11)0.0435 (15)0.0036 (10)0.0149 (11)0.0008 (10)
O120.0512 (16)0.0449 (16)0.070 (2)0.0018 (13)0.0158 (14)0.0089 (14)
O130.073 (2)0.0581 (18)0.0390 (16)0.0120 (15)0.0235 (14)0.0048 (14)
Geometric parameters (Å, °) top
C1—C21.336 (5)C13—H130.9300
C1—N21.359 (5)C14—N31.312 (5)
C1—H10.9300C14—N41.313 (6)
C2—N11.362 (4)C14—H140.9300
C2—H20.9300Mo1—O21.695 (2)
C3—N21.319 (5)Mo1—O71.756 (2)
C3—N11.326 (4)Mo1—O31.783 (2)
C3—H30.9300Mo1—O11.811 (2)
C4—N11.468 (4)Mo2—O41.690 (2)
C4—C51.513 (5)Mo2—O51.697 (3)
C4—H4A0.9700Mo2—O61.908 (2)
C4—H4B0.9700Mo2—O11i1.966 (2)
C5—C101.381 (5)Mo2—O32.267 (2)
C5—C61.384 (5)Mo2—O1i2.410 (3)
C6—C71.387 (7)Mo3—O91.692 (2)
C6—H60.9300Mo3—O81.704 (2)
C7—C81.374 (7)Mo3—O61.894 (2)
C7—H70.9300Mo3—O101.955 (2)
C8—C91.383 (6)Mo3—O72.298 (2)
C8—H80.9300Mo3—O1i2.341 (2)
C9—C101.391 (5)Mo4—O131.687 (3)
C9—C111.501 (6)Mo4—O121.704 (3)
C10—H100.9300Mo4—O101.842 (2)
C11—N31.472 (5)Mo4—O111.858 (3)
C11—H11A0.9700N2—H210.901 (10)
C11—H11B0.9700N4—H410.896 (10)
C12—C131.320 (7)O1—Mo3i2.341 (2)
C12—N31.385 (5)O1—Mo2i2.410 (2)
C12—H120.9300O11—Mo2i1.966 (2)
C13—N41.364 (7)
C2—C1—N2106.7 (3)O4—Mo2—O6100.96 (12)
C2—C1—H1126.6O5—Mo2—O699.70 (12)
N2—C1—H1126.6O4—Mo2—O11i100.83 (12)
C1—C2—N1107.6 (3)O5—Mo2—O11i95.11 (13)
C1—C2—H2126.2O6—Mo2—O11i149.63 (10)
N1—C2—H2126.2O4—Mo2—O396.62 (11)
N2—C3—N1107.9 (3)O5—Mo2—O3158.19 (12)
N2—C3—H3126.1O6—Mo2—O381.93 (9)
N1—C3—H3126.1O11i—Mo2—O374.76 (10)
N1—C4—C5110.7 (3)O4—Mo2—O1i166.93 (12)
N1—C4—H4A109.5O5—Mo2—O1i87.85 (12)
C5—C4—H4A109.5O6—Mo2—O1i71.84 (9)
N1—C4—H4B109.5O11i—Mo2—O1i82.45 (9)
C5—C4—H4B109.5O3—Mo2—O1i71.88 (10)
H4A—C4—H4B108.1O9—Mo3—O8104.73 (13)
C10—C5—C6119.0 (4)O9—Mo3—O6101.50 (12)
C10—C5—C4120.1 (3)O8—Mo3—O698.69 (11)
C6—C5—C4121.0 (3)O9—Mo3—O10100.47 (12)
C5—C6—C7119.9 (4)O8—Mo3—O1095.41 (11)
C5—C6—H6120.1O6—Mo3—O10149.84 (10)
C7—C6—H6120.1O9—Mo3—O790.60 (11)
C8—C7—C6120.6 (4)O8—Mo3—O7164.34 (12)
C8—C7—H7119.7O6—Mo3—O781.03 (10)
C6—C7—H7119.7O10—Mo3—O778.34 (10)
C7—C8—C9120.3 (4)O9—Mo3—O1i163.48 (12)
C7—C8—H8119.8O8—Mo3—O1i91.69 (12)
C9—C8—H8119.8O6—Mo3—O1i73.73 (9)
C8—C9—C10118.6 (4)O10—Mo3—O1i79.36 (10)
C8—C9—C11121.4 (4)O7—Mo3—O1i73.12 (10)
C10—C9—C11120.0 (4)O13—Mo4—O12107.75 (16)
C5—C10—C9121.5 (3)O13—Mo4—O10105.68 (13)
C5—C10—H10119.2O12—Mo4—O10105.41 (13)
C9—C10—H10119.2O13—Mo4—O11109.38 (14)
N3—C11—C9111.1 (3)O12—Mo4—O11102.95 (12)
N3—C11—H11A109.4O10—Mo4—O11124.66 (10)
C9—C11—H11A109.4C3—N1—C2108.4 (3)
N3—C11—H11B109.4C3—N1—C4126.6 (3)
C9—C11—H11B109.4C2—N1—C4124.9 (3)
H11A—C11—H11B108.0C3—N2—C1109.3 (3)
C13—C12—N3107.7 (4)C3—N2—H21124 (3)
C13—C12—H12126.2C1—N2—H21127 (3)
N3—C12—H12126.2C14—N3—C12107.7 (4)
C12—C13—N4106.7 (4)C14—N3—C11125.6 (3)
C12—C13—H13126.7C12—N3—C11126.7 (3)
N4—C13—H13126.7C14—N4—C13109.4 (4)
N3—C14—N4108.6 (4)C14—N4—H41125 (4)
N3—C14—H14125.7C13—N4—H41125 (4)
N4—C14—H14125.7Mo1—O1—Mo3i132.92 (13)
O2—Mo1—O7108.29 (13)Mo1—O1—Mo2i138.66 (13)
O2—Mo1—O3108.47 (12)Mo3i—O1—Mo2i88.18 (8)
O7—Mo1—O3112.67 (11)Mo1—O3—Mo2126.04 (12)
O2—Mo1—O1107.09 (14)Mo3—O6—Mo2120.84 (11)
O7—Mo1—O1108.11 (13)Mo1—O7—Mo3124.65 (12)
O3—Mo1—O1111.99 (12)Mo4—O10—Mo3135.18 (14)
O4—Mo2—O5104.33 (14)Mo4—O11—Mo2i129.54 (13)
Symmetry codes: (i) −x+1, −y+2, −z+2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O12ii0.90 (1)1.96 (2)2.844 (4)168 (4)
N4—H41···O5iii0.90 (1)2.51 (5)3.003 (5)115 (4)
N4—H41···O8iii0.90 (1)2.23 (4)2.909 (5)132 (5)
Symmetry codes: (ii) −x+1, −y+1, −z+2; (iii) x+1, y−1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H21···O12i0.90 (1)1.96 (2)2.844 (4)168 (4)
N4—H41···O5ii0.90 (1)2.51 (5)3.003 (5)115 (4)
N4—H41···O8ii0.90 (1)2.23 (4)2.909 (5)132 (5)
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y−1, z.
Acknowledgements top

The authors thank the Project of Innovation Service Platform of Heilongjiang Province (PG09J001) and Heilongjiang University for supporting this work.

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xie, Y.-M., Yu, R.-M., Wu, X.-Y., Wang, F., Zhang, J. & Lu, C.-Z. (2011). Cryst. Growth Des. 11, 4739–4741.

Xu, Q., Wang, R.-Z., Yang, G.-Y., Xing, Y.-H., Li, D.-M., Bu, W.-M., Ye, L., Fan, Y.-G., Yang, G.-D., Xong, Y., Lin, Y.-H. & Jia, H.-Q. (1999). Chem. Commun. pp. 983–984.

Yang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C., Jia, H.-Q. & Hu, N.-H. (2006). Eur. J. Inorg. Chem. pp. 1208–1215.