supplementary materials


im2337 scheme

Acta Cryst. (2012). E68, m19    [ doi:10.1107/S1600536811051853 ]

catena-Poly[1-[(2-fluorobenzylidene)amino]quinolinium [plumbate(II)-tri-[mu]-iodido]]

H.-R. Zhao

Abstract top

The title complex, {(C16H12FN2)[PbI3]}n, consists of 1-[(2-fluorobenzylidene)amino]quinolinium cations and a polymeric PbI3- anion formed by face-sharing PbI6 octahedra. These octahedra form straight and regular infinite chains along the b axis. In the asymmetric unit, one cation and one anionic [PbI3]- fragment are observed in general positions. Polymeric chains are produced by the glide plane perpendicular to the a axis.

Comment top

Inorganic-organic hybrid materials have attracted intense interest in recent years, owing to their technologically important physical properties from optics to electronics, such as second-order nonlinear optical (NLO) properties, (Guloy et al., 2001) pyroelectricity, ferroelectricity (Horiuchi et al., 2010) and triboluminescence (Chen et al., 2001).

Inorganic metal-halide building blocks exhibiting [MX6]4-/3- fragments (M = Sn2+, Pb2+, Bi3+, Sb3+; X = F-, Cl-, Br-, I-) have received special attention in the construction of inorganic-organic hybrid materials (Zhang et al., 2006; Bi et al., 2008). Herein we report the crystal structure of the title compound (I) (Figure 1).

The title compound crystallizes in the orthorhombic space group Pbca with an asymmetric unit containing one anionic PbI3 fragment together with one Schiff base cation. The polymeric anion [PbI3]nn- possesses slightly distorted PbI6 octahedra which are linked to polymeric chains by symmetry related atoms (symmetry code 1/2 - x, 1/2 + y, z). Bond lengths and angles are in good agreement with the other structurally characterized compounds with the same anion (Zhao et al., 2010; Duan et al., 2011)

Related literature top

For second-order non-linear optical (NLO) properties, pyroelectricity, ferroelectricity and triboluminescence of inorganic-organic hybrid materials, see: Guloy et al. (2001); Horiuchi et al. (2010); Chen et al. (2001). For related structures, see: Bi et al. (2008); Zhang et al. (2006); Duan et al. (2011); Zhao et al. (2010).

Experimental top

A mixture of PbI2 (461.3 mg, 1.0 mmol) and 1-(2-fluorobenzylideneamino)-quinolinium iodide (377.9 mg, 1.0 mmol) in a 1:1 molar ratio in DMF was slowly evaporated to produce orange-red needle-shaped crystals. The yield of the compound (1) was 67%.

Refinement top

H atoms were placed to the bonded parent atoms in geometrically idealized positions and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Cut-out of the polymeric polyanion consisting of face-sharing PbI6 octahedra showing displacement ellipsoids at the 30% probability level.
catena-Poly[1-[(2-fluorobenzylidene)amino]quinolinium [plumbate(II)-tri-µ-iodido]] top
Crystal data top
(C16H12FN2)[PbI3]Z = 8
Mr = 839.17F(000) = 2976
Orthorhombic, PbcaDx = 2.677 Mg m3
Hall symbol: -P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 20.888 (4) ŵ = 12.56 mm1
b = 7.9112 (15) ÅT = 296 K
c = 25.197 (5) ÅNeddle, orange-red
V = 4163.8 (14) Å30.04 × 0.02 × 0.01 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4090 independent reflections
Radiation source: fine-focus sealed tube1770 reflections with I > 2σ(I)
graphiteRint = 0.156
phi and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 2525
Tmin = 0.747, Tmax = 0.882k = 99
30847 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0158P)2]
where P = (Fo2 + 2Fc2)/3
4090 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
(C16H12FN2)[PbI3]V = 4163.8 (14) Å3
Mr = 839.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 20.888 (4) ŵ = 12.56 mm1
b = 7.9112 (15) ÅT = 296 K
c = 25.197 (5) Å0.04 × 0.02 × 0.01 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4090 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1770 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.882Rint = 0.156
30847 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.96 e Å3
S = 0.96Δρmin = 0.95 e Å3
4090 reflectionsAbsolute structure: ?
208 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C120.1124 (8)0.409 (2)0.2967 (6)0.073 (5)
Pb10.24868 (3)0.30676 (6)0.394853 (19)0.04686 (15)
I10.31600 (4)0.05236 (13)0.48094 (3)0.0538 (3)
I20.12891 (4)0.05643 (12)0.40030 (4)0.0583 (3)
I30.31533 (4)0.05436 (13)0.30998 (3)0.0596 (3)
F10.1508 (4)0.4781 (12)0.2589 (4)0.111 (4)
N10.0224 (5)0.2690 (14)0.1530 (4)0.049 (3)
N20.0119 (5)0.2585 (14)0.2088 (4)0.058 (3)
C10.0187 (7)0.2012 (17)0.1191 (5)0.060 (4)
H10.05620.15250.13180.073*
C20.0062 (7)0.2018 (18)0.0630 (6)0.071 (5)
H20.03590.15790.03920.086*
C30.0503 (7)0.2683 (18)0.0453 (6)0.064 (4)
H30.05970.26750.00930.077*
C40.0927 (7)0.336 (2)0.0803 (7)0.070 (5)
C50.1517 (7)0.408 (2)0.0643 (6)0.090 (6)
H50.16220.41150.02840.108*
C60.1922 (7)0.471 (2)0.0994 (6)0.112 (7)
H60.22990.52160.08770.134*
C70.1793 (7)0.464 (2)0.1555 (6)0.097 (6)
H70.20870.50720.17960.117*
C80.1249 (7)0.394 (2)0.1730 (6)0.080 (5)
H80.11700.38710.20920.096*
C90.0800 (7)0.3326 (18)0.1367 (6)0.055 (4)
C100.0397 (6)0.3288 (15)0.2223 (5)0.043 (3)
H100.06650.37730.19710.052*
C110.0565 (7)0.3323 (17)0.2785 (5)0.051 (4)
C130.1289 (7)0.421 (2)0.3469 (6)0.080 (5)
H130.16600.47880.35630.096*
C140.0916 (9)0.350 (2)0.3848 (7)0.096 (6)
H140.10400.35260.42020.115*
C150.0353 (8)0.274 (2)0.3700 (6)0.083 (6)
H150.00970.22520.39590.099*
C160.0158 (7)0.2680 (18)0.3182 (6)0.065 (4)
H160.02380.22200.30930.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.076 (12)0.102 (14)0.042 (10)0.015 (11)0.003 (9)0.037 (10)
Pb10.0469 (3)0.0437 (3)0.0499 (3)0.0005 (2)0.0006 (4)0.0024 (3)
I10.0494 (6)0.0675 (6)0.0444 (5)0.0033 (6)0.0076 (4)0.0005 (5)
I20.0422 (5)0.0616 (6)0.0710 (6)0.0023 (5)0.0070 (5)0.0082 (6)
I30.0676 (6)0.0681 (6)0.0432 (5)0.0080 (6)0.0125 (5)0.0060 (6)
F10.067 (7)0.161 (10)0.104 (8)0.055 (6)0.000 (6)0.021 (7)
N10.046 (8)0.065 (9)0.035 (8)0.004 (7)0.006 (6)0.009 (6)
N20.050 (8)0.080 (9)0.043 (8)0.009 (6)0.010 (6)0.005 (6)
C10.052 (10)0.071 (11)0.059 (11)0.007 (8)0.001 (8)0.019 (8)
C20.037 (10)0.117 (15)0.060 (11)0.014 (10)0.023 (8)0.021 (10)
C30.044 (10)0.088 (12)0.061 (11)0.013 (9)0.002 (8)0.015 (9)
C40.039 (10)0.085 (13)0.087 (13)0.008 (9)0.016 (9)0.004 (10)
C50.034 (9)0.190 (19)0.046 (9)0.021 (11)0.002 (7)0.037 (11)
C60.059 (11)0.21 (2)0.062 (11)0.040 (12)0.019 (10)0.037 (13)
C70.023 (8)0.20 (2)0.066 (11)0.017 (11)0.003 (7)0.045 (12)
C80.052 (11)0.124 (16)0.064 (11)0.005 (10)0.008 (9)0.012 (10)
C90.043 (10)0.067 (11)0.057 (11)0.004 (8)0.013 (8)0.013 (9)
C100.057 (10)0.046 (9)0.027 (8)0.006 (7)0.014 (7)0.000 (6)
C110.044 (9)0.065 (10)0.042 (9)0.001 (8)0.007 (7)0.005 (7)
C130.035 (9)0.134 (15)0.072 (12)0.023 (11)0.016 (8)0.017 (12)
C140.089 (15)0.123 (16)0.077 (15)0.019 (12)0.020 (12)0.018 (12)
C150.071 (14)0.109 (15)0.068 (13)0.014 (11)0.011 (10)0.010 (11)
C160.065 (12)0.095 (13)0.036 (9)0.017 (9)0.005 (9)0.004 (9)
Geometric parameters (Å, °) top
C12—C131.313 (17)C3—H30.9300
C12—F11.359 (16)C4—C51.418 (18)
C12—C111.397 (17)C4—C91.446 (18)
Pb1—I3i3.1935 (12)C5—C61.323 (17)
Pb1—I23.1938 (11)C5—H50.9300
Pb1—I1i3.2102 (11)C6—C71.440 (18)
Pb1—I2i3.2339 (11)C6—H60.9300
Pb1—I33.2402 (11)C7—C81.335 (18)
Pb1—I13.2761 (11)C7—H70.9300
I1—Pb1ii3.2102 (11)C8—C91.399 (18)
I2—Pb1ii3.2339 (11)C8—H80.9300
I3—Pb1ii3.1935 (11)C10—C111.457 (16)
N1—C11.324 (14)C10—H100.9300
N1—C91.366 (15)C11—C161.407 (17)
N1—N21.427 (13)C13—C141.355 (19)
N2—C101.260 (14)C13—H130.9300
C1—C21.437 (17)C14—C151.373 (19)
C1—H10.9300C14—H140.9300
C2—C31.366 (17)C15—C161.368 (17)
C2—H20.9300C15—H150.9300
C3—C41.358 (18)C16—H160.9300
C13—C12—F1119.5 (15)C3—C4—C9120.7 (15)
C13—C12—C11124.6 (16)C5—C4—C9116.5 (15)
F1—C12—C11115.9 (13)C6—C5—C4121.3 (15)
I3i—Pb1—I294.65 (3)C6—C5—H5119.4
I3i—Pb1—I1i84.55 (3)C4—C5—H5119.4
I2—Pb1—I1i90.95 (3)C5—C6—C7121.4 (15)
I3i—Pb1—I2i89.13 (3)C5—C6—H6119.3
I2—Pb1—I2i175.06 (4)C7—C6—H6119.3
I1i—Pb1—I2i86.24 (3)C8—C7—C6120.0 (14)
I3i—Pb1—I396.66 (3)C8—C7—H7120.0
I2—Pb1—I389.01 (3)C6—C7—H7120.0
I1i—Pb1—I3178.79 (3)C7—C8—C9120.0 (14)
I2i—Pb1—I393.71 (3)C7—C8—H8120.0
I3i—Pb1—I1179.26 (3)C9—C8—H8120.0
I2—Pb1—I185.80 (3)N1—C9—C8121.5 (14)
I1i—Pb1—I196.03 (3)N1—C9—C4117.6 (14)
I2i—Pb1—I190.45 (3)C8—C9—C4120.8 (15)
I3—Pb1—I182.76 (3)N2—C10—C11118.4 (12)
Pb1ii—I1—Pb175.16 (2)N2—C10—H10120.8
Pb1—I2—Pb1ii75.97 (2)C11—C10—H10120.8
Pb1ii—I3—Pb175.88 (2)C16—C11—C12115.4 (13)
C1—N1—C9121.7 (13)C16—C11—C10122.6 (13)
C1—N1—N2120.8 (12)C12—C11—C10121.9 (13)
C9—N1—N2117.0 (12)C12—C13—C14119.9 (16)
C10—N2—N1111.8 (11)C12—C13—H13120.1
N1—C1—C2121.0 (14)C14—C13—H13120.1
N1—C1—H1119.5C13—C14—C15118.9 (17)
C2—C1—H1119.5C13—C14—H14120.6
C3—C2—C1118.6 (13)C15—C14—H14120.6
C3—C2—H2120.7C16—C15—C14122.0 (16)
C1—C2—H2120.7C16—C15—H15119.0
C4—C3—C2120.2 (15)C14—C15—H15119.0
C4—C3—H3119.9C15—C16—C11119.1 (14)
C2—C3—H3119.9C15—C16—H16120.5
C3—C4—C5122.9 (16)C11—C16—H16120.5
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1/2, y−1/2, z.
Acknowledgements top

The authors thank the Natural Science Foundation of China for financial support (grant No. 21002096).

references
References top

Bi, W., Louvain, N., Mercier, N., Luc, J., Rau, I., Kajzar, F. & Sahraoui, B. (2008). Adv. Mater. 20, 1013–1017.

Chen, X. F., Duan, C. Y., Zhu, X. H., You, X. Z., Raj, S. S. S., Fun, H. K. & Wu, J. (2001). Mater. Chem. Phys. 72, 11–15.

Duan, H. B., Zhao, H. R., Ren, X. M., Zhou, H., Tian, Z. F. & Jin, W. Q. (2011). Dalton Trans. 40, 1672–1683.

Guloy, A. M., Tang, Z. J., Miranda, P. B. & Srdanov, V. I. (2001). Adv. Mater. 13, 833–837.

Horiuchi, S., Tokunaga, Y., Giovannetti, G., Picozzi, S., Itoh, H., Shimano, R., Kumai, R. & Tokura, Y. (2010). Nature (London), 463, 789–792.

Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.

Zhang, Z. J., Guo, G. C., Xu, G., Fu, M. L., Zou, J. P. & Huang, J. S. (2006). Inorg. Chem. 45, 10028–10030.

Zhao, H. R., Li, D. P., Ren, X. M., Song, Y. & Jin, W. Q. (2010). J. Am. Chem. Soc. 132, 18–19.