supplementary materials


im2342 scheme

Acta Cryst. (2012). E68, o28    [ doi:10.1107/S1600536811051415 ]

(E)-2-[(2-Formylphenoxy)methyl]-3-(4-methylphenyl)prop-2-enenitrile

N. Manikandan, S. Murugavel, D. Kannan and M. Bakthadoss

Abstract top

In the title compound, C18H15NO2, the dihedral angle between the two benzene rings is 74.8 (1)°. The carbonitrile chain is almost linear, the C-C-N angle being 176.2 (2)°. In the crystal, [pi]-[pi] interactions [centroid-centroid distance = 3.842 (1) Å] are observed.

Comment top

The title compound is a stereodefined trisubstituted olefin, synthesized from the corresponding bromoderivative of a Baylis- Hillman adduct with salicylaldehyde via simple SN2 reaction in good yields. This o-salicyladehyde derivative is an important precursor for many heterocyclic frameworks (Bakthadoss et al., 2010).

The title compound comprises a benzaldehyde moiety connected to a tolyl ring through a chain formed by a methoxy methyl and a propenenitrile group. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig.1.

The dihedral angle between the two aromatic rings is 74.8 (1)°. The propenenitrile (N1/C17/C8–C11) plane forms dihedral angles of 53.6 (1)° and 22.7 (1)°, respectively, with the formyl phenyl and tolyl rings. The bond length C9—C17 [1.431 (2) Å] is significantly shorter than the expected value for a C—C single bond because of conjugation effects (Prasanna et al., 2011). The carbonitrile side chain (C9–C17–N1) is almost linear, with the angle around the central carbon atom being 176.2 (2)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Swaminathan et al., 2011, Prasanna et al., 2011).

The crystal packing (Fig. 2) is stabilized by intermolecular ππ interactions with a Cg—Cgi seperation of 3.842 (1) Å [Fig. 2; Cg is the centroid of the C1–C6 benzene ring, symmetry code as in Fig. 2].

Related literature top

For background to the synthetic procedure, see: Bakthadoss & Murugan (2010). For related structures, see: Swaminathan et al. (2011); Prasanna et al. (2011).

Experimental top

A solution of salicylaldehyde (1.0 mmol, 0.12 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile was stirred for 15 minutes at room temperature. To this solution, (E)-2-(bromomethyl)-3-(4-methylphenyl)prop-2-enenitrile (1.2 mmol, 0.28 g) was added dropwise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated. EtOAc (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to a crude product, which was purified through a pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.24 g, 86 % yield). Recrystallization was carried out using ethylacetate as the solvent.

Refinement top

H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the ππ interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the centroid of the C1–C6 benzene ring. [Symmetry code: (i) -x, 1-y, -z].
(E)-2-[(2-Formylphenoxy)methyl]-3-(4-methylphenyl)prop-2-enenitrile top
Crystal data top
C18H15NO2F(000) = 584
Mr = 277.31Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3403 reflections
a = 7.0792 (4) Åθ = 2.0–27.5°
b = 13.7006 (7) ŵ = 0.08 mm1
c = 15.3587 (9) ÅT = 293 K
β = 96.782 (2)°Block, yellow
V = 1479.21 (14) Å30.23 × 0.21 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3321 independent reflections
Radiation source: fine-focus sealed tube1950 reflections with I > 2σ(I)
graphiteRint = 0.022
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 2.0°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.982, Tmax = 0.988l = 1919
15027 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.2089P]
where P = (Fo2 + 2Fc2)/3
3321 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H15NO2V = 1479.21 (14) Å3
Mr = 277.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0792 (4) ŵ = 0.08 mm1
b = 13.7006 (7) ÅT = 293 K
c = 15.3587 (9) Å0.23 × 0.21 × 0.15 mm
β = 96.782 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3321 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1950 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.022
15027 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.14 e Å3
S = 1.01Δρmin = 0.14 e Å3
3321 reflectionsAbsolute structure: ?
191 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6118 (2)0.26454 (11)0.25898 (11)0.0828 (5)
O10.2658 (2)0.23139 (12)0.09622 (11)0.1133 (5)
O20.25632 (15)0.38860 (8)0.11791 (7)0.0726 (3)
C10.0835 (2)0.37959 (11)0.06904 (11)0.0621 (4)
C20.0823 (2)0.42103 (13)0.09048 (12)0.0750 (5)
H20.08250.45650.14210.090*
C30.2478 (2)0.40934 (15)0.03456 (14)0.0856 (6)
H30.35990.43720.04890.103*
C40.2505 (3)0.35721 (16)0.04214 (14)0.0879 (6)
H40.36310.35020.07940.105*
C50.0866 (3)0.31602 (14)0.06293 (12)0.0777 (5)
H50.08790.28120.11500.093*
C60.0820 (2)0.32522 (11)0.00780 (11)0.0648 (4)
C70.2538 (3)0.27629 (15)0.02978 (14)0.0846 (5)
H70.36210.28020.01070.101*
C80.2646 (2)0.43560 (13)0.20139 (11)0.0716 (5)
H8A0.18790.40030.23920.086*
H8B0.21670.50180.19450.086*
C90.4680 (2)0.43625 (11)0.24015 (10)0.0627 (4)
C100.5640 (2)0.51893 (12)0.25968 (10)0.0691 (5)
H100.49650.57550.24320.083*
C110.7555 (2)0.53562 (11)0.30210 (10)0.0645 (4)
C120.8639 (3)0.46728 (13)0.35274 (12)0.0802 (5)
H120.81510.40510.35950.096*
C131.0416 (3)0.49015 (14)0.39295 (13)0.0867 (6)
H131.11040.44300.42680.104*
C141.1218 (3)0.58109 (14)0.38479 (12)0.0775 (5)
C151.0151 (3)0.64806 (14)0.33374 (14)0.0858 (6)
H151.06560.70970.32600.103*
C160.8365 (3)0.62670 (12)0.29389 (13)0.0799 (5)
H160.76800.67440.26060.096*
C170.5526 (2)0.34163 (12)0.25245 (11)0.0626 (4)
C181.3145 (3)0.60602 (18)0.43169 (16)0.1045 (7)
H18A1.37770.65080.39670.157*
H18B1.38900.54760.44110.157*
H18C1.29980.63560.48720.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0778 (10)0.0609 (9)0.1058 (12)0.0005 (7)0.0062 (8)0.0046 (8)
O10.1137 (12)0.1266 (12)0.1033 (12)0.0130 (9)0.0288 (9)0.0442 (10)
O20.0653 (7)0.0851 (8)0.0650 (7)0.0095 (5)0.0017 (5)0.0154 (6)
C10.0592 (9)0.0628 (9)0.0630 (10)0.0010 (7)0.0026 (8)0.0060 (8)
C20.0696 (11)0.0788 (11)0.0761 (12)0.0068 (8)0.0068 (9)0.0040 (9)
C30.0615 (11)0.0977 (14)0.0965 (15)0.0056 (9)0.0051 (10)0.0173 (12)
C40.0681 (12)0.1052 (15)0.0864 (14)0.0147 (10)0.0076 (10)0.0145 (12)
C50.0758 (12)0.0859 (12)0.0700 (12)0.0228 (9)0.0022 (9)0.0022 (9)
C60.0651 (10)0.0634 (9)0.0656 (10)0.0123 (7)0.0067 (8)0.0028 (8)
C70.0784 (12)0.0901 (13)0.0856 (14)0.0107 (10)0.0112 (10)0.0195 (11)
C80.0733 (10)0.0748 (11)0.0655 (11)0.0118 (8)0.0038 (8)0.0101 (8)
C90.0720 (10)0.0596 (9)0.0554 (9)0.0067 (7)0.0026 (7)0.0061 (7)
C100.0839 (11)0.0567 (9)0.0656 (10)0.0108 (8)0.0037 (9)0.0036 (8)
C110.0798 (11)0.0495 (8)0.0640 (10)0.0044 (7)0.0078 (8)0.0086 (7)
C120.1049 (14)0.0552 (9)0.0741 (11)0.0040 (9)0.0157 (10)0.0031 (8)
C130.1041 (14)0.0701 (11)0.0791 (13)0.0091 (10)0.0170 (11)0.0103 (9)
C140.0785 (11)0.0775 (12)0.0773 (12)0.0015 (9)0.0130 (9)0.0236 (10)
C150.0853 (13)0.0634 (11)0.1111 (16)0.0060 (9)0.0212 (12)0.0088 (11)
C160.0834 (12)0.0572 (10)0.0991 (14)0.0075 (8)0.0105 (10)0.0000 (9)
C170.0622 (9)0.0593 (10)0.0650 (10)0.0037 (7)0.0013 (7)0.0061 (8)
C180.0862 (14)0.1194 (17)0.1068 (17)0.0062 (12)0.0066 (12)0.0322 (14)
Geometric parameters (Å, °) top
N1—C171.1362 (19)C9—C101.337 (2)
O1—C71.203 (2)C9—C171.431 (2)
O2—C11.3634 (17)C10—C111.451 (2)
O2—C81.4297 (19)C10—H100.9300
C1—C21.378 (2)C11—C161.385 (2)
C1—C61.395 (2)C11—C121.389 (2)
C2—C31.378 (2)C12—C131.371 (2)
C2—H20.9300C12—H120.9300
C3—C41.376 (3)C13—C141.381 (3)
C3—H30.9300C13—H130.9300
C4—C51.362 (3)C14—C151.374 (3)
C4—H40.9300C14—C181.505 (3)
C5—C61.385 (2)C15—C161.370 (3)
C5—H50.9300C15—H150.9300
C6—C71.462 (3)C16—H160.9300
C7—H70.9300C18—H18A0.9600
C8—C91.492 (2)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C8—H8B0.9700
C1—O2—C8118.26 (12)C17—C9—C8114.60 (13)
O2—C1—C2124.43 (15)C9—C10—C11131.12 (15)
O2—C1—C6115.50 (14)C9—C10—H10114.4
C2—C1—C6120.06 (15)C11—C10—H10114.4
C3—C2—C1119.25 (18)C16—C11—C12116.81 (16)
C3—C2—H2120.4C16—C11—C10118.41 (15)
C1—C2—H2120.4C12—C11—C10124.76 (16)
C4—C3—C2121.25 (18)C13—C12—C11121.01 (17)
C4—C3—H3119.4C13—C12—H12119.5
C2—C3—H3119.4C11—C12—H12119.5
C5—C4—C3119.34 (17)C12—C13—C14122.04 (18)
C5—C4—H4120.3C12—C13—H13119.0
C3—C4—H4120.3C14—C13—H13119.0
C4—C5—C6121.04 (18)C15—C14—C13116.75 (18)
C4—C5—H5119.5C15—C14—C18121.87 (19)
C6—C5—H5119.5C13—C14—C18121.36 (19)
C5—C6—C1119.04 (16)C16—C15—C14121.92 (18)
C5—C6—C7119.82 (17)C16—C15—H15119.0
C1—C6—C7121.13 (15)C14—C15—H15119.0
O1—C7—C6125.05 (18)C15—C16—C11121.46 (17)
O1—C7—H7117.5C15—C16—H16119.3
C6—C7—H7117.5C11—C16—H16119.3
O2—C8—C9107.21 (13)N1—C17—C9176.18 (17)
O2—C8—H8A110.3C14—C18—H18A109.5
C9—C8—H8A110.3C14—C18—H18B109.5
O2—C8—H8B110.3H18A—C18—H18B109.5
C9—C8—H8B110.3C14—C18—H18C109.5
H8A—C8—H8B108.5H18A—C18—H18C109.5
C10—C9—C17122.98 (14)H18B—C18—H18C109.5
C10—C9—C8122.40 (14)
C8—O2—C1—C26.6 (2)O2—C8—C9—C1759.52 (19)
C8—O2—C1—C6174.26 (14)C17—C9—C10—C116.1 (3)
O2—C1—C2—C3178.05 (15)C8—C9—C10—C11175.59 (16)
C6—C1—C2—C31.0 (2)C9—C10—C11—C16163.39 (19)
C1—C2—C3—C40.0 (3)C9—C10—C11—C1218.2 (3)
C2—C3—C4—C50.3 (3)C16—C11—C12—C130.6 (3)
C3—C4—C5—C60.5 (3)C10—C11—C12—C13177.83 (17)
C4—C5—C6—C11.5 (3)C11—C12—C13—C140.5 (3)
C4—C5—C6—C7177.08 (18)C12—C13—C14—C150.4 (3)
O2—C1—C6—C5177.37 (13)C12—C13—C14—C18178.02 (19)
C2—C1—C6—C51.8 (2)C13—C14—C15—C161.1 (3)
O2—C1—C6—C74.1 (2)C18—C14—C15—C16177.31 (19)
C2—C1—C6—C7176.79 (16)C14—C15—C16—C111.0 (3)
C5—C6—C7—O14.5 (3)C12—C11—C16—C150.1 (3)
C1—C6—C7—O1176.95 (19)C10—C11—C16—C15178.63 (17)
C1—O2—C8—C9179.60 (13)C10—C9—C17—N1160 (3)
O2—C8—C9—C10118.94 (17)C8—C9—C17—N119 (3)
Acknowledgements top

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

references
References top

Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.

Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Prasanna, C. M. S., Sethusankar, K., Rajesh, R. & Raghunathan, R. (2011). Acta Cryst. E67, o2176.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Swaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o2000.