metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m23-m24

(12,17-Dieth­­oxy­carbonyl-11,18-di­methyl-2,3:6,7-di­butano­corrphycenato)copper(II)–12,17-dieth­­oxy­carbonyl-11,18-di­methyl-2:3,6:7-di­butano­corrphycene (3/97)

aDepartment of Chemistry, Faculty of Medicine, Toho University, Ota-ku Tokyo 143-8540, Japan, bDepartment of Physical Chemistry, Graduate School of Pharmaceutical, Sciences, Chuoh-Inohana, Chiba, Chiba 260-8675, Japan, and cAdvanced Technology Support, Division, RIKEN Advanced Science, Institute, Wako, Saitama 351-0198, Japan
*Correspondence e-mail: yohgo@med.toho-u.ac.jp

(Received 29 November 2011; accepted 3 December 2011; online 10 December 2011)

The corrphycene mol­ecule of the title compound, [Cu(C36H36N4O4)]0.034.0.966C36H38N4O4, has an essentially planar macrocyclic framwork with a slightly distorted trapezoidal N4 core; the r.m.s. deviation of the peripheral 20 C atoms and four N atoms is 0.054 (3) Å. The surface area within the N4-coordinating core (8.358 Å2) is significantly smaller than that (8.503 Å2) of the corresponding free-base porphyrin. Two intra­molecular N—H⋯N hydrogen bonds are observed. Detailed structure analysis clarified that the co-crystallization of the free-base corrphycene together with a quite minor component (ca 3%) of corrphycenato–CuII occurred in the recrystallization process.

Related literature

For the first synthesis of free-base corrphycene, see: Sessler et al. (1994[Sessler, J. L., Brucker, E. A., Weghorn, S. J., Michael Kisters, D.-C., Martin Schäfer, D.-C., Lex, J. & Vogel, E. (1994). Angew. Chem. Int. Ed. 33, 2308-2312.]). For some related metal corrphycene compounds, see: Sessler et al. (2000[Sessler, J. L., Gebauer, A. & Vogel, E. (2000). The Porphyrin Handbook, Vol. 2, pp. 1-54. New York: Academic Press.]). For related porphyrin analogues such as porphycene, N-confused porphyrins, corroles etc. see: Chmielewski et al. (1994[Chmielewski, P. J., Latos-Grazynski, L., Rachlewicz, K. & Glowiak, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 779-781.]); Erben et al. (2000[Erben, C., Will, S. & Kadish, K. M. (2000). The Porphyrin Handbook, Vol. 2, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 233-300. San Diego: Academic Press.]); Furuta et al. (1994[Furuta, H., Asano, T. & Ogawa, T. (1994). J. Am. Chem. Soc. 116, 767-768.]); Gross et al. (2000[Gross, Z., Golubkov, G. & Simkhovich, L. (2000). Angew. Chem. Int. Ed. 39, 4045-4047.]). For structures of five-coordinated halide-ligated iron(III) porphyrin, porphycene and corrphycene complexes, see: Ohgo, Neya, Funasaki et al. (2001[Ohgo, Y., Neya, S., Funasaki, N. & Nakamura, M. (2001). Acta Cryst. C57, 694-695.]); Ohgo, Neya, Ikeue et al. (2001[Ohgo, Y., Neya, S., Ikeue, T., Funasaki, N. & Nakamura, M. (2001). Acta Cryst. C57, 1046-1047.]); Ohgo et al. (2002[Ohgo, Y., Neya, S., Ikeue, T., Funasaki, N., Takahashi, M., Takeda, M. & Nakamura, M. (2002). Inorg. Chem. 41, 4627-4629.]). For the synthesis of the starting materials, see: Neya et al. (1998[Neya, S., Nishinaga, K., Ohyama, K. & Funasaki, N. (1998). Tetrahedron Lett. 39, 5217-5220.]); Hombrecher & Horter (1992[Hombrecher, H. K. & Horter, G. (1992). Synthesis, pp. 389-391.]). For the structure of the corresponding porphyrin free-base, see: Lauher & Ibers (1973[Lauher, J. W. & Ibers, J. A. (1973). J. Am. Chem. Soc. 95, 5148-5152.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C36H36N4O4)]0.034·0.966C36H38N4O4

  • Mr = 592.80

  • Triclinic, [P \overline 1]

  • a = 8.8759 (5) Å

  • b = 13.2493 (8) Å

  • c = 13.2891 (7) Å

  • α = 108.496 (2)°

  • β = 90.708 (2)°

  • γ = 98.142 (2)°

  • V = 1464.4 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.31 × 0.25 × 0.10 mm

Data collection
  • Rigaku RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.788, Tmax = 0.923

  • 14734 measured reflections

  • 6677 independent reflections

  • 3707 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.246

  • S = 1.15

  • 6677 reflections

  • 412 parameters

  • H-atom parameters constrained

  • Δρmax = 1.69 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2 0.85 2.33 2.777 (4) 113
N1—H1⋯N4 0.89 2.11 2.774 (4) 131

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., Texas, USA.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Investigations on the porphyrin isomers such as porphycenes, N-confused porphyrins, corroles, etc. have attracted much attention because their unique core geometry often leads to different physicochemical properties both in artificial model complexes and hemeproteins (Erben et al., 2000; Gross et al., 2000; Ohgo et al., 2002; Sessler et al., 2000). The accumulations of the structure analyses on these unique core geometry should be of great advantage in designing the new artificial materials or artificial proteins. It is also quite important to elucidate the electronic and steric effects of the peripheral substituents of the macrocycles, since the reconstitution experiments of these substituted macrocycles instead of normal hemes frequently represent some unusual functional activities. In this paper, we report structure analysis of free-base corrphycene which possess large cyclohexyl rings at pyrrole β-positions. Figure 1 shows the ORTEP drawing of the title compound with atom numbering. The corrphycene macrocycle shows nearly planar structure where the r.m.s. deviation of the peripheral 20 carbon atoms and 4 nitrogen atoms is only 0.054 (3) Å. The central N4 cavity shows trapezoidal geometry with N1···N2 = 2.578, N2···N3 = 2.774, N3···N4 = 3.538 and N4···N1 = 2.776 Å. Thus, the surface area within the N4 coordinating core is 8.358 Å2, which is significantly smaller than that of the corresponding free-base porphyrin, 8.503 Å2 in OEP (OEP: dianion of 2,3,7,8,12,13,17,18-octaethylporphyrin; Lauher et al., 1973). Two intramolecular hydrogen bonds are found; N1—H1···N4 and N3—H3···N2. The detailed structure analysis clarified that the co-crystallization of the free-base corrphycene together with corrphycenato-Cu(II), which is an intermediate product in the template synthesis, is occurred in the recrystallization process. It is quite interesting that the free-base and it's metal complex are co-crystallized in this manner. This phenomenon should be ascribed to the structural similarity, such as core geometry and planarity, in both compounds. Figure 2 shows a packing diagram, which exhibits the layered structure of the title compound. The distance between the layers is determined to be 3.174 Å.

Related literature top

For the first synthesis of free-base corrphycene, see: Sessler et al. (1994). For some related metal corrphycene compounds, see: Sessler et al. (2000). For related porphyrin analogues such as porphycene, N-confused porphyrins, corroles etc. see: Chmielewski et al. (1994); Erben et al. (2000); Furuta et al. (1994); Gross et al. (2000). For structures of five-coordinated halide-ligated iron(III) porphyrin, porphycene and corrphycene complexes, see: Ohgo, Neya, Funasaki et al. (2001); Ohgo, Neya, Ikeue et al. (2001); Ohgo et al. (2002). For the synthesis of the starting materials, see: Neya et al. (1998); Hombrecher & Horter (1992). For the structure of the corresponding porphyrin free-base, see: Lauher & Ibers (1973).

Experimental top

Ethyl 4,5,6,7-tetrahydro-2H-isoindole-1-carboxylate was prepared from 2-formyl cyclohexanone and ethyl glycine hydrochloride according to the reported method (Hombrecher et al., 1992). The compound was derived into 12,17-diethoxycarbonyl-11,18-dimethyl-2,3:6,7-dibutanocorrphycene according to the reported method (Neya et al., 1998). The cyclization of the α,ω-free tetrapyrrole was accomplished by copper(II) chloride. The chelating copper is readily removed by sulfuric acid. NMR spectra of the obtained title compound showed slight broadening probably because of the contamination of the small amount of its metal complex. Futher purification was carried out, however, no changes were observed in the NMR spectra. The solid thus obtained was recrystallized from chloroform solution.

Refinement top

The contamination of a small amount of the corrphycenato-Cu(II) was observed. The ratio of the free-base corrphycene to corrphycenato-Cu(II) complex are determined to be 0.97/0.03 based on the electron density of the copper atom. Since the occupancy factor for the minor conponent, corrphycenato-Cu(II), was too low, it was impossible to separate atomic coordinates and displacement parameters of free-base and metal complex. Hence, bond lengths and angles involving the copper atom listed in the cif could not be accurate. The highest residual electron density peak is located 1.58 Å from atom C22. The positional parameters for H1 and H3 were refined at the beginning of the refinement and were fixed later to refine the occupancy factors. Other H atoms were refined using a riding model. The positional parameters of H atoms were constrained to have the C—H distances of 0.96 Å for primary, 0.97 Å for secondary, and 0.93 Å for aromatic. Hydrogen U values constrained to 1.2 times the equivalent isotropic U of the atoms to which they are attached (1.5 for methyl groups).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic numbering. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound.
(12,17-Diethoxycarbonyl-11,18-dimethyl-2,3:6,7- dibutanocorrphycenato)copper(II)–12,17-diethoxycarbonyl-11,18-dimethyl- 2:3,6:7-dibutanocorrphycene (3/97) top
Crystal data top
[Cu(C36H36N4O4)]0.034·0.966C36H38N4O4Z = 2
Mr = 592.80F(000) = 630.8
Triclinic, P1Dx = 1.344 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8759 (5) ÅCell parameters from 9696 reflections
b = 13.2493 (8) Åθ = 3.0–27.5°
c = 13.2891 (7) ŵ = 0.11 mm1
α = 108.496 (2)°T = 296 K
β = 90.708 (2)°Block, purple
γ = 98.142 (2)°0.31 × 0.25 × 0.10 mm
V = 1464.4 (1) Å3
Data collection top
Rigaku RAPID
diffractometer
6677 independent reflections
Radiation source: fine-focus sealed tube3707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω–scanh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.788, Tmax = 0.923l = 1717
14734 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.246H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.1301P)2]
where P = (Fo2 + 2Fc2)/3
6677 reflections(Δ/σ)max < 0.001
412 parametersΔρmax = 1.69 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu(C36H36N4O4)]0.034·0.966C36H38N4O4γ = 98.142 (2)°
Mr = 592.80V = 1464.4 (1) Å3
Triclinic, P1Z = 2
a = 8.8759 (5) ÅMo Kα radiation
b = 13.2493 (8) ŵ = 0.11 mm1
c = 13.2891 (7) ÅT = 296 K
α = 108.496 (2)°0.31 × 0.25 × 0.10 mm
β = 90.708 (2)°
Data collection top
Rigaku RAPID
diffractometer
6677 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3707 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.923Rint = 0.044
14734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.246H-atom parameters constrained
S = 1.15Δρmax = 1.69 e Å3
6677 reflectionsΔρmin = 0.58 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.0199 (11)0.0170 (8)0.6898 (8)0.023 (4)*0.0342 (17)
H10.05790.03710.75510.066 (14)*0.9658 (17)
H30.11660.00140.61830.090 (18)*0.9658 (17)
O10.5049 (3)0.24582 (18)0.5059 (2)0.0473 (6)
O20.5345 (2)0.10428 (16)0.36605 (17)0.0342 (5)
O30.2084 (4)0.46877 (19)0.9008 (2)0.0608 (8)
O40.2074 (3)0.45953 (18)1.06523 (19)0.0498 (7)
N10.1223 (3)0.0788 (2)0.7810 (2)0.0307 (6)
N20.0363 (3)0.16368 (19)0.5921 (2)0.0301 (6)
N30.1672 (3)0.00372 (19)0.5646 (2)0.0285 (5)
N40.0455 (3)0.12471 (19)0.82171 (19)0.0294 (6)
C10.1757 (3)0.0399 (2)0.8790 (2)0.0300 (6)
C20.2824 (3)0.1250 (2)0.8933 (2)0.0309 (7)
C30.2908 (3)0.2135 (2)0.8016 (2)0.0288 (6)
C40.1868 (3)0.1822 (2)0.7303 (2)0.0293 (6)
C50.1381 (3)0.2301 (2)0.6262 (2)0.0278 (6)
C60.1705 (3)0.3366 (2)0.5470 (2)0.0299 (6)
C70.0859 (4)0.3315 (2)0.4628 (2)0.0316 (7)
C80.0022 (3)0.2228 (2)0.4921 (2)0.0295 (6)
C90.0992 (3)0.1786 (2)0.4340 (2)0.0306 (7)
H90.11550.22260.36630.037*
C100.1798 (3)0.0737 (2)0.4675 (2)0.0301 (6)
C110.2930 (3)0.0293 (2)0.4121 (2)0.0295 (6)
C120.3471 (3)0.0748 (2)0.4781 (2)0.0291 (6)
C130.2670 (3)0.0956 (2)0.5738 (2)0.0276 (6)
C140.2903 (3)0.1949 (2)0.6577 (2)0.0311 (7)
H140.36640.24250.64180.037*
C150.2366 (3)0.2440 (2)0.7553 (2)0.0312 (7)
H150.28410.31510.78300.037*
C160.1310 (3)0.2192 (2)0.8265 (2)0.0300 (6)
C170.1087 (3)0.3021 (2)0.9271 (2)0.0310 (7)
C180.0115 (3)0.2540 (2)0.9838 (2)0.0300 (6)
C190.0280 (3)0.1427 (2)0.9157 (2)0.0299 (6)
C200.1292 (3)0.0661 (2)0.9425 (2)0.0301 (6)
H200.16910.08801.00900.036*
C210.3712 (4)0.1235 (3)0.9887 (3)0.0351 (7)
H21A0.44550.07500.99580.042*
H21B0.30240.09621.05190.042*
C220.4532 (4)0.2350 (3)0.9811 (3)0.0443 (8)
H22A0.38300.27341.00540.053*
H22B0.53670.22721.02800.053*
C230.5151 (4)0.3006 (3)0.8697 (3)0.0419 (8)
H23A0.59150.26500.84780.050*
H23B0.56500.37050.87010.050*
C240.3943 (4)0.3170 (2)0.7888 (3)0.0348 (7)
H24A0.33470.36990.79780.042*
H24B0.44310.34450.71770.042*
C250.2743 (4)0.4357 (2)0.5472 (3)0.0379 (7)
H25A0.37950.42500.54110.045*
H25B0.25800.44900.61390.045*
C260.2449 (4)0.5331 (3)0.4549 (3)0.0474 (9)
H26A0.15420.55830.47300.057*
H26B0.33010.59080.44440.057*
C270.2240 (5)0.5075 (3)0.3518 (3)0.0485 (9)
H27A0.21220.57270.29500.058*
H27B0.31420.48170.33360.058*
C280.0856 (4)0.4230 (2)0.3618 (3)0.0354 (7)
H28A0.00650.45470.36160.042*
H28B0.08690.39660.30160.042*
C290.3370 (4)0.0890 (3)0.3028 (2)0.0345 (7)
H29A0.34390.04250.26000.052*
H29B0.26120.15090.27070.052*
H29C0.43390.11180.30800.052*
C300.4677 (3)0.1519 (2)0.4546 (2)0.0303 (6)
C310.6546 (4)0.1722 (2)0.3344 (2)0.0335 (7)
H31A0.73760.19910.38880.040*
H31B0.61590.23310.32350.040*
C320.7086 (4)0.1028 (3)0.2324 (3)0.0411 (8)
H32A0.73900.04010.24310.062*
H32B0.79380.14290.21110.062*
H32C0.62740.08130.17800.062*
C330.1799 (4)0.4170 (2)0.9603 (3)0.0366 (7)
C340.2742 (6)0.5728 (3)1.1055 (3)0.0632 (12)
H34A0.35100.58801.05880.076*
H34B0.19580.61711.10670.076*
C350.3420 (6)0.5982 (3)1.2102 (4)0.0796 (16)
H35A0.26740.57881.25520.119*
H35B0.37870.67411.23810.119*
H35C0.42560.55891.20790.119*
C360.0458 (4)0.3008 (2)1.0907 (3)0.0354 (7)
H36A0.01650.28741.14320.053*
H36B0.14930.26831.09170.053*
H36C0.04160.37711.10630.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0499 (14)0.0317 (12)0.0501 (15)0.0069 (11)0.0205 (12)0.0036 (11)
O20.0380 (12)0.0289 (11)0.0339 (12)0.0020 (9)0.0101 (9)0.0104 (9)
O30.109 (2)0.0311 (13)0.0394 (15)0.0042 (14)0.0083 (15)0.0134 (11)
O40.0808 (19)0.0276 (11)0.0339 (14)0.0099 (12)0.0029 (12)0.0081 (10)
N10.0306 (13)0.0276 (12)0.0311 (14)0.0015 (11)0.0012 (11)0.0081 (11)
N20.0295 (13)0.0264 (12)0.0327 (14)0.0010 (11)0.0008 (10)0.0095 (10)
N30.0313 (13)0.0253 (12)0.0275 (13)0.0016 (11)0.0036 (10)0.0077 (10)
N40.0296 (13)0.0288 (13)0.0291 (14)0.0026 (11)0.0027 (10)0.0090 (10)
C10.0307 (15)0.0285 (15)0.0310 (16)0.0009 (13)0.0029 (12)0.0116 (12)
C20.0319 (15)0.0304 (15)0.0301 (16)0.0045 (13)0.0031 (12)0.0095 (12)
C30.0258 (14)0.0254 (14)0.0360 (17)0.0005 (12)0.0016 (12)0.0124 (12)
C40.0266 (15)0.0275 (14)0.0330 (17)0.0009 (12)0.0020 (12)0.0102 (12)
C50.0246 (14)0.0239 (14)0.0353 (17)0.0008 (12)0.0015 (12)0.0113 (12)
C60.0279 (15)0.0263 (14)0.0347 (17)0.0023 (12)0.0003 (12)0.0096 (12)
C70.0349 (16)0.0278 (15)0.0306 (17)0.0028 (13)0.0001 (12)0.0081 (12)
C80.0264 (14)0.0288 (14)0.0318 (16)0.0001 (12)0.0027 (12)0.0096 (12)
C90.0327 (16)0.0288 (15)0.0273 (16)0.0013 (13)0.0007 (12)0.0066 (12)
C100.0285 (15)0.0299 (15)0.0321 (16)0.0036 (13)0.0011 (12)0.0105 (12)
C110.0306 (15)0.0273 (14)0.0304 (16)0.0006 (13)0.0010 (12)0.0109 (12)
C120.0281 (15)0.0285 (15)0.0318 (16)0.0035 (13)0.0015 (12)0.0117 (12)
C130.0256 (14)0.0291 (15)0.0303 (16)0.0015 (12)0.0046 (11)0.0136 (12)
C140.0316 (15)0.0288 (15)0.0328 (17)0.0016 (13)0.0022 (12)0.0124 (13)
C150.0321 (16)0.0270 (14)0.0321 (17)0.0025 (13)0.0002 (12)0.0090 (12)
C160.0321 (16)0.0253 (14)0.0319 (16)0.0007 (13)0.0020 (12)0.0103 (12)
C170.0333 (16)0.0235 (14)0.0344 (17)0.0013 (13)0.0011 (13)0.0094 (12)
C180.0304 (15)0.0304 (15)0.0287 (16)0.0003 (13)0.0015 (12)0.0106 (12)
C190.0299 (15)0.0308 (15)0.0288 (16)0.0032 (13)0.0016 (12)0.0098 (12)
C200.0307 (15)0.0278 (15)0.0301 (16)0.0003 (13)0.0025 (12)0.0087 (12)
C210.0390 (17)0.0330 (16)0.0344 (17)0.0068 (14)0.0044 (13)0.0119 (13)
C220.0430 (19)0.0433 (19)0.045 (2)0.0026 (16)0.0066 (16)0.0165 (16)
C230.046 (2)0.0388 (18)0.042 (2)0.0018 (16)0.0080 (15)0.0163 (15)
C240.0376 (17)0.0303 (16)0.0367 (18)0.0006 (14)0.0011 (13)0.0132 (13)
C250.0377 (17)0.0311 (16)0.0420 (19)0.0014 (14)0.0079 (14)0.0103 (14)
C260.050 (2)0.0319 (17)0.050 (2)0.0057 (16)0.0081 (17)0.0044 (15)
C270.056 (2)0.0370 (18)0.042 (2)0.0061 (17)0.0051 (17)0.0036 (15)
C280.0391 (17)0.0273 (15)0.0368 (18)0.0016 (13)0.0012 (13)0.0078 (13)
C290.0354 (16)0.0348 (16)0.0324 (17)0.0022 (14)0.0048 (13)0.0109 (13)
C300.0288 (15)0.0292 (15)0.0323 (17)0.0022 (13)0.0024 (12)0.0117 (13)
C310.0320 (16)0.0337 (16)0.0344 (17)0.0034 (14)0.0035 (13)0.0142 (13)
C320.048 (2)0.0457 (19)0.0343 (18)0.0087 (17)0.0110 (15)0.0183 (15)
C330.0456 (19)0.0280 (15)0.0357 (18)0.0050 (14)0.0023 (14)0.0101 (13)
C340.111 (4)0.0269 (17)0.044 (2)0.013 (2)0.007 (2)0.0112 (16)
C350.086 (3)0.034 (2)0.103 (4)0.006 (2)0.032 (3)0.007 (2)
C360.0399 (17)0.0287 (15)0.0365 (18)0.0033 (14)0.0080 (14)0.0099 (13)
Geometric parameters (Å, º) top
Cu—N21.954 (10)C17—C181.373 (4)
Cu—N12.026 (10)C17—C331.485 (4)
Cu—N42.105 (10)C18—C191.453 (4)
Cu—N32.189 (10)C18—C361.487 (4)
O1—C301.209 (4)C19—C201.394 (4)
O2—C301.337 (4)C20—H200.9300
O2—C311.450 (4)C21—C221.523 (5)
O3—C331.208 (4)C21—H21A0.9700
O4—C331.332 (4)C21—H21B0.9700
O4—C341.456 (4)C22—C231.510 (5)
N1—C41.357 (4)C22—H22A0.9700
N1—C11.358 (4)C22—H22B0.9700
N1—H10.886C23—C241.516 (5)
N2—C51.355 (4)C23—H23A0.9700
N2—C81.374 (4)C23—H23B0.9700
N3—C131.371 (4)C24—H24A0.9700
N3—C101.388 (4)C24—H24B0.9700
N3—H30.854C25—C261.528 (4)
N4—C161.351 (4)C25—H25A0.9700
N4—C191.385 (4)C25—H25B0.9700
C1—C201.390 (4)C26—C271.519 (5)
C1—C21.429 (4)C26—H26A0.9700
C2—C31.390 (4)C26—H26B0.9700
C2—C211.497 (4)C27—C281.515 (5)
C3—C41.444 (4)C27—H27A0.9700
C3—C241.498 (4)C27—H27B0.9700
C4—C51.427 (4)C28—H28A0.9700
C5—C61.456 (4)C28—H28B0.9700
C6—C71.369 (4)C29—H29A0.9600
C6—C251.494 (4)C29—H29B0.9600
C7—C81.453 (4)C29—H29C0.9600
C7—C281.497 (4)C31—C321.504 (4)
C8—C91.379 (4)C31—H31A0.9700
C9—C101.400 (4)C31—H31B0.9700
C9—H90.9300C32—H32A0.9600
C10—C111.423 (4)C32—H32B0.9600
C11—C121.392 (4)C32—H32C0.9600
C11—C291.503 (4)C34—C351.427 (6)
C12—C131.433 (4)C34—H34A0.9700
C12—C301.479 (4)C34—H34B0.9700
C13—C141.416 (4)C35—H35A0.9600
C14—C151.379 (4)C35—H35B0.9600
C14—H140.9300C35—H35C0.9600
C15—C161.419 (4)C36—H36A0.9600
C15—H150.9300C36—H36B0.9600
C16—C171.473 (4)C36—H36C0.9600
N2—Cu—N180.7 (4)C22—C21—H21B109.2
N2—Cu—N4165.0 (6)H21A—C21—H21B107.9
N1—Cu—N484.3 (4)C23—C22—C21112.9 (3)
N2—Cu—N383.9 (4)C23—C22—H22A109.0
N1—Cu—N3164.4 (5)C21—C22—H22A109.0
N4—Cu—N3110.9 (4)C23—C22—H22B109.0
C30—O2—C31116.0 (2)C21—C22—H22B109.0
C33—O4—C34116.5 (3)H22A—C22—H22B107.8
C4—N1—C1111.7 (3)C22—C23—C24113.7 (3)
C4—N1—Cu112.8 (3)C22—C23—H23A108.8
C1—N1—Cu135.4 (3)C24—C23—H23A108.8
C4—N1—H1127.1C22—C23—H23B108.8
C5—N2—C8106.3 (2)C24—C23—H23B108.8
C5—N2—Cu116.1 (3)H23A—C23—H23B107.7
C8—N2—Cu137.5 (4)C3—C24—C23111.0 (3)
C13—N3—C10109.8 (2)C3—C24—H24A109.4
C13—N3—Cu124.0 (3)C23—C24—H24A109.4
C10—N3—Cu126.1 (3)C3—C24—H24B109.4
C13—N3—H3117.9C23—C24—H24B109.4
C10—N3—H3132.0H24A—C24—H24B108.0
C16—N4—C19106.7 (2)C6—C25—C26110.7 (3)
C16—N4—Cu125.3 (3)C6—C25—H25A109.5
C19—N4—Cu127.9 (3)C26—C25—H25A109.5
N1—C1—C20121.0 (3)C6—C25—H25B109.5
N1—C1—C2106.8 (3)C26—C25—H25B109.5
C20—C1—C2132.2 (3)H25A—C25—H25B108.1
C3—C2—C1107.9 (3)C27—C26—C25112.6 (3)
C3—C2—C21124.3 (3)C27—C26—H26A109.1
C1—C2—C21127.8 (3)C25—C26—H26A109.1
C2—C3—C4106.8 (3)C27—C26—H26B109.1
C2—C3—C24122.2 (3)C25—C26—H26B109.1
C4—C3—C24131.0 (3)H26A—C26—H26B107.8
N1—C4—C5115.8 (3)C28—C27—C26111.2 (3)
N1—C4—C3106.8 (3)C28—C27—H27A109.4
C5—C4—C3137.4 (3)C26—C27—H27A109.4
N2—C5—C4114.4 (3)C28—C27—H27B109.4
N2—C5—C6111.0 (3)C26—C27—H27B109.4
C4—C5—C6134.5 (3)H27A—C27—H27B108.0
C7—C6—C5105.9 (3)C7—C28—C27109.9 (3)
C7—C6—C25123.0 (3)C7—C28—H28A109.7
C5—C6—C25131.1 (3)C27—C28—H28A109.7
C6—C7—C8106.6 (3)C7—C28—H28B109.7
C6—C7—C28124.5 (3)C27—C28—H28B109.7
C8—C7—C28128.8 (3)H28A—C28—H28B108.2
N2—C8—C9121.3 (3)C11—C29—H29A109.5
N2—C8—C7110.1 (3)C11—C29—H29B109.5
C9—C8—C7128.6 (3)H29A—C29—H29B109.5
C8—C9—C10126.1 (3)C11—C29—H29C109.5
C8—C9—H9117.0H29A—C29—H29C109.5
C10—C9—H9117.0H29B—C29—H29C109.5
N3—C10—C9125.0 (3)O1—C30—O2122.4 (3)
N3—C10—C11108.1 (3)O1—C30—C12126.7 (3)
C9—C10—C11126.9 (3)O2—C30—C12110.9 (2)
C12—C11—C10106.5 (3)O2—C31—C32106.4 (3)
C12—C11—C29129.9 (3)O2—C31—H31A110.4
C10—C11—C29123.6 (3)C32—C31—H31A110.4
C11—C12—C13108.8 (3)O2—C31—H31B110.4
C11—C12—C30126.1 (3)C32—C31—H31B110.4
C13—C12—C30125.1 (3)H31A—C31—H31B108.6
N3—C13—C14129.2 (3)C31—C32—H32A109.5
N3—C13—C12106.8 (2)C31—C32—H32B109.5
C14—C13—C12124.0 (3)H32A—C32—H32B109.5
C15—C14—C13140.4 (3)C31—C32—H32C109.5
C15—C14—H14109.8H32A—C32—H32C109.5
C13—C14—H14109.8H32B—C32—H32C109.5
C14—C15—C16139.4 (3)O3—C33—O4122.4 (3)
C14—C15—H15110.3O3—C33—C17125.0 (3)
C16—C15—H15110.3O4—C33—C17112.6 (3)
N4—C16—C15130.2 (3)C35—C34—O4110.2 (3)
N4—C16—C17109.5 (3)C35—C34—H34A109.6
C15—C16—C17120.2 (3)O4—C34—H34A109.6
C18—C17—C16107.7 (3)C35—C34—H34B109.6
C18—C17—C33126.6 (3)O4—C34—H34B109.6
C16—C17—C33125.6 (3)H34A—C34—H34B108.1
C17—C18—C19104.9 (3)C34—C35—H35A109.5
C17—C18—C36129.6 (3)C34—C35—H35B109.5
C19—C18—C36125.5 (3)H35A—C35—H35B109.5
N4—C19—C20125.4 (3)C34—C35—H35C109.5
N4—C19—C18111.2 (3)H35A—C35—H35C109.5
C20—C19—C18123.5 (3)H35B—C35—H35C109.5
C1—C20—C19125.9 (3)C18—C36—H36A109.5
C1—C20—H20117.0C18—C36—H36B109.5
C19—C20—H20117.0H36A—C36—H36B109.5
C2—C21—C22112.1 (3)C18—C36—H36C109.5
C2—C21—H21A109.2H36A—C36—H36C109.5
C22—C21—H21A109.2H36B—C36—H36C109.5
C2—C21—H21B109.2
N2—Cu—N1—C42.9 (4)C8—C9—C10—C11175.0 (3)
N4—Cu—N1—C4178.1 (2)N3—C10—C11—C120.4 (3)
N3—Cu—N1—C413.5 (19)C9—C10—C11—C12176.7 (3)
N2—Cu—N1—C1178.4 (3)N3—C10—C11—C29179.1 (3)
N4—Cu—N1—C12.6 (5)C9—C10—C11—C293.8 (5)
N3—Cu—N1—C1171.0 (16)C10—C11—C12—C130.6 (3)
N1—Cu—N2—C52.1 (4)C29—C11—C12—C13178.8 (3)
N4—Cu—N2—C56 (2)C10—C11—C12—C30179.2 (3)
N3—Cu—N2—C5179.3 (2)C29—C11—C12—C301.4 (5)
N1—Cu—N2—C8178.9 (3)C10—N3—C13—C14178.4 (3)
N4—Cu—N2—C8175.1 (17)Cu—N3—C13—C144.3 (5)
N3—Cu—N2—C81.8 (6)C10—N3—C13—C120.4 (3)
N2—Cu—N3—C13175.6 (2)Cu—N3—C13—C12176.9 (3)
N1—Cu—N3—C13165.1 (17)C11—C12—C13—N30.7 (3)
N4—Cu—N3—C132.6 (5)C30—C12—C13—N3179.2 (2)
N2—Cu—N3—C101.2 (5)C11—C12—C13—C14178.3 (3)
N1—Cu—N3—C1012 (2)C30—C12—C13—C141.9 (4)
N4—Cu—N3—C10179.4 (3)N3—C13—C14—C150.4 (6)
N2—Cu—N4—C16178.0 (18)C12—C13—C14—C15178.2 (3)
N1—Cu—N4—C16178.2 (2)C13—C14—C15—C162.9 (7)
N3—Cu—N4—C165.1 (6)C19—N4—C16—C15175.0 (3)
N2—Cu—N4—C197 (2)Cu—N4—C16—C159.2 (5)
N1—Cu—N4—C193.3 (5)C19—N4—C16—C171.4 (3)
N3—Cu—N4—C19180.0 (3)Cu—N4—C16—C17174.4 (3)
C4—N1—C1—C20177.3 (3)C14—C15—C16—N44.7 (6)
Cu—N1—C1—C201.7 (6)C14—C15—C16—C17179.2 (3)
C4—N1—C1—C20.5 (3)N4—C16—C17—C182.0 (3)
Cu—N1—C1—C2176.0 (4)C15—C16—C17—C18174.8 (3)
N1—C1—C2—C30.5 (3)N4—C16—C17—C33178.3 (3)
C20—C1—C2—C3176.8 (3)C15—C16—C17—C334.9 (4)
N1—C1—C2—C21179.1 (3)C16—C17—C18—C191.7 (3)
C20—C1—C2—C213.6 (5)C33—C17—C18—C19178.6 (3)
C1—C2—C3—C40.4 (3)C16—C17—C18—C36178.8 (3)
C21—C2—C3—C4179.2 (3)C33—C17—C18—C361.0 (5)
C1—C2—C3—C24179.1 (2)C16—N4—C19—C20179.2 (3)
C21—C2—C3—C241.3 (4)Cu—N4—C19—C203.6 (5)
C1—N1—C4—C5179.8 (2)C16—N4—C19—C180.3 (3)
Cu—N1—C4—C53.2 (4)Cu—N4—C19—C18175.3 (4)
C1—N1—C4—C30.2 (3)C17—C18—C19—N40.9 (3)
Cu—N1—C4—C3176.8 (3)C36—C18—C19—N4179.5 (3)
C2—C3—C4—N10.1 (3)C17—C18—C19—C20178.0 (3)
C24—C3—C4—N1179.3 (3)C36—C18—C19—C201.6 (5)
C2—C3—C4—C5179.9 (3)N1—C1—C20—C190.4 (4)
C24—C3—C4—C50.6 (5)C2—C1—C20—C19176.7 (3)
C8—N2—C5—C4179.7 (2)N4—C19—C20—C11.5 (5)
Cu—N2—C5—C41.1 (4)C18—C19—C20—C1177.3 (3)
C8—N2—C5—C60.9 (3)C3—C2—C21—C228.9 (4)
Cu—N2—C5—C6179.9 (3)C1—C2—C21—C22170.6 (3)
N1—C4—C5—N21.5 (4)C2—C21—C22—C2337.3 (4)
C3—C4—C5—N2178.5 (3)C21—C22—C23—C2458.1 (4)
N1—C4—C5—C6177.0 (3)C2—C3—C24—C2316.9 (4)
C3—C4—C5—C63.0 (6)C4—C3—C24—C23162.5 (3)
N2—C5—C6—C71.0 (3)C22—C23—C24—C345.9 (4)
C4—C5—C6—C7179.5 (3)C7—C6—C25—C2612.8 (4)
N2—C5—C6—C25179.5 (3)C5—C6—C25—C26168.9 (3)
C4—C5—C6—C252.0 (5)C6—C25—C26—C2743.0 (4)
C5—C6—C7—C80.6 (3)C25—C26—C27—C2862.6 (4)
C25—C6—C7—C8179.3 (3)C6—C7—C28—C2717.6 (4)
C5—C6—C7—C28179.0 (3)C8—C7—C28—C27162.0 (3)
C25—C6—C7—C280.4 (5)C26—C27—C28—C746.9 (4)
C5—N2—C8—C9179.9 (3)C31—O2—C30—O10.2 (4)
Cu—N2—C8—C91.0 (6)C31—O2—C30—C12179.7 (2)
C5—N2—C8—C70.5 (3)C11—C12—C30—O1171.8 (3)
Cu—N2—C8—C7179.4 (4)C13—C12—C30—O18.4 (5)
C6—C7—C8—N20.1 (3)C11—C12—C30—O28.2 (4)
C28—C7—C8—N2179.5 (3)C13—C12—C30—O2171.6 (2)
C6—C7—C8—C9179.4 (3)C30—O2—C31—C32178.4 (2)
C28—C7—C8—C91.0 (5)C34—O4—C33—O30.1 (5)
N2—C8—C9—C101.3 (5)C34—O4—C33—C17178.7 (3)
C7—C8—C9—C10178.3 (3)C18—C17—C33—O3146.8 (4)
C13—N3—C10—C9177.2 (3)C16—C17—C33—O333.5 (5)
Cu—N3—C10—C90.0 (5)C18—C17—C33—O431.9 (4)
C13—N3—C10—C110.0 (3)C16—C17—C33—O4147.8 (3)
Cu—N3—C10—C11177.2 (3)C33—O4—C34—C35161.3 (4)
C8—C9—C10—N31.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.852.332.777 (4)113
N1—H1···N40.892.112.774 (4)131

Experimental details

Crystal data
Chemical formula[Cu(C36H36N4O4)]0.034·0.966C36H38N4O4
Mr592.80
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.8759 (5), 13.2493 (8), 13.2891 (7)
α, β, γ (°)108.496 (2), 90.708 (2), 98.142 (2)
V3)1464.4 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.31 × 0.25 × 0.10
Data collection
DiffractometerRigaku RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.788, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
14734, 6677, 3707
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.246, 1.15
No. of reflections6677
No. of parameters412
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.69, 0.58

Computer programs: CrystalClear (Rigaku/MSC, 2005), HKL-2000 (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.852.332.777 (4)113
N1—H1···N40.892.112.774 (4)131
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 23550083 to YO). This work was also supported by the Research Center for Materials with Integrated Properties and Advanced Medical Research Center, Toho University.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals
First citationChmielewski, P. J., Latos-Grazynski, L., Rachlewicz, K. & Glowiak, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 779–781.  CSD CrossRef Web of Science
First citationErben, C., Will, S. & Kadish, K. M. (2000). The Porphyrin Handbook, Vol. 2, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 233–300. San Diego: Academic Press.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFuruta, H., Asano, T. & Ogawa, T. (1994). J. Am. Chem. Soc. 116, 767–768.  CSD CrossRef CAS Web of Science
First citationGross, Z., Golubkov, G. & Simkhovich, L. (2000). Angew. Chem. Int. Ed. 39, 4045–4047.  CrossRef CAS
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
First citationHombrecher, H. K. & Horter, G. (1992). Synthesis, pp. 389–391.
First citationLauher, J. W. & Ibers, J. A. (1973). J. Am. Chem. Soc. 95, 5148–5152.  CSD CrossRef CAS PubMed Web of Science
First citationNeya, S., Nishinaga, K., Ohyama, K. & Funasaki, N. (1998). Tetrahedron Lett. 39, 5217–5220.  Web of Science CrossRef CAS
First citationOhgo, Y., Neya, S., Funasaki, N. & Nakamura, M. (2001). Acta Cryst. C57, 694–695.  Web of Science CSD CrossRef CAS IUCr Journals
First citationOhgo, Y., Neya, S., Ikeue, T., Funasaki, N. & Nakamura, M. (2001). Acta Cryst. C57, 1046–1047.  Web of Science CSD CrossRef CAS IUCr Journals
First citationOhgo, Y., Neya, S., Ikeue, T., Funasaki, N., Takahashi, M., Takeda, M. & Nakamura, M. (2002). Inorg. Chem. 41, 4627–4629.  Web of Science CSD CrossRef PubMed CAS
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., Texas, USA.
First citationSessler, J. L., Brucker, E. A., Weghorn, S. J., Michael Kisters, D.-C., Martin Schäfer, D.-C., Lex, J. & Vogel, E. (1994). Angew. Chem. Int. Ed. 33, 2308–2312.  CrossRef
First citationSessler, J. L., Gebauer, A. & Vogel, E. (2000). The Porphyrin Handbook, Vol. 2, pp. 1–54. New York: Academic Press.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m23-m24
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds