supplementary materials


is5025 scheme

Acta Cryst. (2012). E68, o67-o68    [ doi:10.1107/S1600536811052433 ]

2,2'-[2,4-Bis(naphthalen-1-yl)cyclobutane-1,3-diyl]bis(1-methylpyridinium) diiodide: thermal-induced [2 + 2] cycloaddition reaction of a heterostilbene

S. Chantrapromma, K. Chanawanno, N. Boonnak and H.-K. Fun

Abstract top

The asymmetric unit of the title compound, C36H32N22+·2I-, consists of one half-molecule of the cation and one I- anion. The cation is located on an inversion centre. The dihedral angle between the pyridinium ring and the naphthalene ring system in the asymmetric unit is 19.01 (14)°. In the crystal, the cations and the anions are linked by C-H...I interactions into a layer parallel to the bc plane. Intra- and intermolecular [pi]-[pi] interactions with centroid-centroid distances of 3.533 (2)-3.807 (2) Å are also observed.

Comment top

Stilbene derivatives have been reported to exhibit non-linear optical (NLO) property (Ruanwas et al., 2010) and antibacterial activity (Chanawanno et al., 2010). It has led us to investigate the bioactivity of [2 + 2] cycloaddition product of stibene derivatives. In general the [2 + 2] dimerization of stilbene can occurred by photoinduced cycloaddition reaction (Papaefstathiou et al., 2002). In our case, however, the [2,2'-(2,4-di(naphthalen-1-yl)cyclobutane-1,3-diyl)bis(1-methylpyridinium)] diiodide, compound (I), was produced by thermal-induced [2 + 2] cycloaddition reaction of (E)-1-methyl-2-[2-(1-naphthyl)vinyl)pyridinium iodide in hot methanol at 323 K. We have also previously reported the crystal structures of the [2 + 2] cycloaddition compounds (Fun, Chanawanno and Chantrapromma, 2009; Fun, Surasit et al., 2009).

The molecular structure of the title compound consists of one C36H32N22+ cation and two I- anions (Fig. 1). The cation lie on and the anion lie near an inversion center. The naphthalene (C1–C10) ring system is planar with an r.m.s. deviation of 0.0479 (4) Å. The dihedral angle between the pyridine (N1/C13–C17) ring and the naphthalenyl ring system is 19.01 (14)°. The steroisomer of (I) is syn head-to-tail (Yayli et al., 2004), and the torsion angle C10–C11–C12–C13 = 1.8 (4)°. The cyclobutane ring makes the dihedral angles of 88.1 (2), 75.9 (2) and 70.8 (2)° with the N1/C13–C17, C1–C6 and C1/C6–C10 rings, respectively. The bond lengths in cation are in normal ranges (Allen et al., 1987) and comparable with those in related structures (Fun, Surasit et al., 2009; Fun, Chanawanno & Chantrapromma, 2009).

The crystal packing of (I) is shown in Fig. 2. The anions are located in the interstitials of the cations and linked with the cations into three-dimensional network by C—H···I interactions (Table 1). ππ interactions were presented with distances of Cg1···Cg2 = 3.580 (2) Å, Cg1···Cg3 = 3.533 (2) Å, Cg1···Cg2iii, iv = 3.807 (2) Å [symmetry codes: (iii) -1 + x, y, z; (iv) 1 + x, y, z]; Cg1, Cg2 and Cg3 are the centroids of N1/C13–C17, C1–C6 and C1/C6–C10 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to stilbene and [2 + 2] photodimerization, see: Chanawanno et al. (2010); Papaefstathiou et al. (2002); Ruanwas et al. (2010); Yayli et al. (2004). For related structures, see: Fun, Chanawanno & Chantrapromma (2009); Fun, Surasit et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A solution of (E)-1-methyl-2-[2-(1-naphthyl)vinyl)pyridinium iodide (500 mg) in CH3OH (20 ml) was heated at 323 K until a clear solution was obtained and then left to stand at room temperature overnight. The yellow powder which is the product of [2 + 2] cycloaddition reaction of heterostilbene was formed. Yellow block-shaped single crystals of compound (I) suitable for X-ray structure determination were obtained after recrystallization in CH3OH by slow evaporation of the solvent at room temperature after a few weeks.

Refinement top

H atoms of cyclobutane (at atom C11 and C12) are located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.89 Å from I1 and the deepest hole is located at 1.21 Å from H18C.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. The suffix A corresponds to symmetry code 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. C—H···I interactions are shown as dashed lines.
2,2'-[2,4-Bis(naphthalen-1-yl)cyclobutane-1,3-diyl]bis(1-methylpyridinium) diiodide top
Crystal data top
C36H32N22+·2IF(000) = 736
Mr = 746.44Dx = 1.625 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4449 reflections
a = 7.0061 (1) Åθ = 2.2–30.0°
b = 20.7920 (4) ŵ = 2.09 mm1
c = 10.8956 (2) ÅT = 100 K
β = 106.063 (1)°Block, yellow
V = 1525.21 (5) Å30.15 × 0.13 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4449 independent reflections
Radiation source: sealed tube3475 reflections with I > 2σ(I)
graphiteRint = 0.050
φ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.749, Tmax = 0.854k = 2229
18762 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0278P)2 + 1.442P]
where P = (Fo2 + 2Fc2)/3
4449 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 1.92 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
C36H32N22+·2IV = 1525.21 (5) Å3
Mr = 746.44Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.0061 (1) ŵ = 2.09 mm1
b = 20.7920 (4) ÅT = 100 K
c = 10.8956 (2) Å0.15 × 0.13 × 0.08 mm
β = 106.063 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4449 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3475 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.854Rint = 0.050
18762 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 1.92 e Å3
S = 1.09Δρmin = 0.86 e Å3
4449 reflectionsAbsolute structure: ?
190 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.51619 (4)0.361747 (10)0.802649 (19)0.02498 (7)
N10.5483 (4)0.35243 (12)0.3555 (2)0.0160 (5)
C10.0993 (5)0.40695 (16)0.3501 (3)0.0195 (6)
C20.1492 (5)0.35697 (16)0.4416 (3)0.0235 (7)
H2A0.22120.36640.52500.028*
C30.0915 (5)0.29415 (17)0.4080 (4)0.0291 (8)
H3A0.12330.26180.46920.035*
C40.0154 (5)0.27911 (19)0.2811 (4)0.0347 (9)
H4A0.04770.23660.25760.042*
C50.0712 (5)0.3272 (2)0.1930 (4)0.0313 (9)
H5A0.14450.31700.11030.038*
C60.0201 (5)0.39223 (18)0.2246 (3)0.0241 (8)
C70.0847 (5)0.44256 (19)0.1352 (3)0.0276 (8)
H7A0.16240.43310.05320.033*
C80.0340 (5)0.50453 (19)0.1684 (3)0.0281 (8)
H8A0.08600.53750.11130.034*
C90.0972 (5)0.51915 (17)0.2890 (3)0.0226 (7)
H9A0.13470.56170.30860.027*
C100.1710 (5)0.47208 (15)0.3781 (3)0.0182 (6)
C110.3468 (5)0.48207 (15)0.4937 (3)0.0168 (6)
C120.5522 (5)0.45067 (14)0.4853 (3)0.0145 (6)
C130.5385 (4)0.41782 (15)0.3610 (3)0.0153 (6)
C140.4890 (5)0.45169 (15)0.2464 (3)0.0174 (6)
H14A0.48890.49640.24740.021*
C150.4397 (5)0.41930 (16)0.1308 (3)0.0203 (7)
H15A0.40980.44220.05450.024*
C160.4353 (5)0.35306 (16)0.1291 (3)0.0229 (7)
H16A0.39340.33080.05230.027*
C170.4939 (5)0.32046 (16)0.2430 (3)0.0215 (7)
H17A0.49610.27570.24270.026*
C180.6237 (5)0.31341 (15)0.4735 (3)0.0203 (7)
H18A0.75860.32530.51490.030*
H18B0.61820.26860.45150.030*
H18C0.54300.32110.53030.030*
H110.305 (5)0.4670 (18)0.574 (3)0.026 (10)*
H120.610 (5)0.4215 (17)0.560 (3)0.019 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04756 (15)0.01318 (10)0.01593 (10)0.00056 (11)0.01167 (8)0.00136 (9)
N10.0222 (13)0.0125 (13)0.0156 (12)0.0010 (11)0.0089 (10)0.0007 (10)
C10.0145 (15)0.0240 (17)0.0214 (16)0.0010 (13)0.0071 (12)0.0014 (13)
C20.0201 (16)0.0197 (16)0.0315 (18)0.0017 (14)0.0082 (13)0.0016 (14)
C30.0250 (19)0.0199 (17)0.044 (2)0.0014 (15)0.0115 (16)0.0018 (15)
C40.027 (2)0.0250 (19)0.051 (3)0.0103 (16)0.0085 (18)0.0148 (17)
C50.0227 (18)0.036 (2)0.034 (2)0.0104 (16)0.0056 (16)0.0149 (17)
C60.0143 (15)0.0321 (19)0.0263 (19)0.0038 (14)0.0065 (14)0.0053 (14)
C70.0197 (17)0.042 (2)0.0186 (17)0.0033 (16)0.0007 (13)0.0016 (15)
C80.0182 (17)0.036 (2)0.0262 (18)0.0011 (15)0.0005 (14)0.0061 (15)
C90.0202 (16)0.0238 (17)0.0238 (17)0.0014 (14)0.0059 (13)0.0006 (13)
C100.0198 (16)0.0185 (15)0.0176 (15)0.0016 (13)0.0075 (12)0.0048 (12)
C110.0186 (15)0.0155 (14)0.0165 (14)0.0007 (12)0.0053 (12)0.0011 (11)
C120.0182 (15)0.0132 (14)0.0131 (14)0.0001 (12)0.0061 (11)0.0011 (11)
C130.0190 (15)0.0127 (14)0.0151 (14)0.0009 (12)0.0061 (11)0.0017 (12)
C140.0206 (16)0.0144 (15)0.0184 (14)0.0002 (12)0.0073 (12)0.0019 (12)
C150.0220 (16)0.0226 (16)0.0170 (15)0.0006 (14)0.0068 (12)0.0028 (13)
C160.0292 (18)0.0215 (18)0.0185 (15)0.0012 (14)0.0075 (13)0.0028 (13)
C170.0326 (19)0.0131 (15)0.0206 (15)0.0014 (14)0.0104 (14)0.0053 (12)
C180.0285 (18)0.0146 (15)0.0179 (15)0.0034 (13)0.0069 (13)0.0037 (12)
Geometric parameters (Å, °) top
N1—C171.354 (4)C9—H9A0.9300
N1—C131.363 (4)C10—C111.513 (4)
N1—C181.488 (4)C11—C12i1.555 (4)
C1—C21.415 (5)C11—C121.606 (4)
C1—C61.424 (4)C11—H111.05 (4)
C1—C101.447 (4)C12—C131.496 (4)
C2—C31.386 (5)C12—C11i1.555 (4)
C2—H2A0.9300C12—H121.01 (3)
C3—C41.413 (5)C13—C141.392 (4)
C3—H3A0.9300C14—C151.385 (4)
C4—C51.365 (6)C14—H14A0.9300
C4—H4A0.9300C15—C161.377 (5)
C5—C61.417 (5)C15—H15A0.9300
C5—H5A0.9300C16—C171.373 (5)
C6—C71.416 (5)C16—H16A0.9300
C7—C81.359 (5)C17—H17A0.9300
C7—H7A0.9300C18—H18A0.9600
C8—C91.413 (5)C18—H18B0.9600
C8—H8A0.9300C18—H18C0.9600
C9—C101.375 (4)
C17—N1—C13121.6 (3)C10—C11—C12i118.6 (3)
C17—N1—C18117.3 (3)C10—C11—C12115.6 (2)
C13—N1—C18121.1 (3)C12i—C11—C1289.7 (2)
C2—C1—C6118.9 (3)C10—C11—H11108 (2)
C2—C1—C10122.3 (3)C12i—C11—H11112 (2)
C6—C1—C10118.7 (3)C12—C11—H11113 (2)
C3—C2—C1120.6 (3)C13—C12—C11i117.1 (3)
C3—C2—H2A119.7C13—C12—C11113.8 (2)
C1—C2—H2A119.7C11i—C12—C1190.3 (2)
C2—C3—C4120.2 (4)C13—C12—H12111.6 (19)
C2—C3—H3A119.9C11i—C12—H12111 (2)
C4—C3—H3A119.9C11—C12—H12111.4 (19)
C5—C4—C3119.8 (3)N1—C13—C14117.9 (3)
C5—C4—H4A120.1N1—C13—C12120.3 (3)
C3—C4—H4A120.1C14—C13—C12121.3 (3)
C4—C5—C6121.6 (3)C15—C14—C13120.5 (3)
C4—C5—H5A119.2C15—C14—H14A119.8
C6—C5—H5A119.2C13—C14—H14A119.8
C7—C6—C5121.8 (3)C16—C15—C14119.8 (3)
C7—C6—C1119.5 (3)C16—C15—H15A120.1
C5—C6—C1118.7 (3)C14—C15—H15A120.1
C8—C7—C6120.5 (3)C17—C16—C15118.8 (3)
C8—C7—H7A119.8C17—C16—H16A120.6
C6—C7—H7A119.8C15—C16—H16A120.6
C7—C8—C9120.4 (3)N1—C17—C16121.0 (3)
C7—C8—H8A119.8N1—C17—H17A119.5
C9—C8—H8A119.8C16—C17—H17A119.5
C10—C9—C8121.6 (3)N1—C18—H18A109.5
C10—C9—H9A119.2N1—C18—H18B109.5
C8—C9—H9A119.2H18A—C18—H18B109.5
C9—C10—C1118.4 (3)N1—C18—H18C109.5
C9—C10—C11123.4 (3)H18A—C18—H18C109.5
C1—C10—C11117.3 (3)H18B—C18—H18C109.5
C6—C1—C2—C33.3 (5)C1—C10—C11—C12i170.7 (3)
C10—C1—C2—C3174.5 (3)C9—C10—C11—C12103.7 (4)
C1—C2—C3—C41.0 (5)C1—C10—C11—C1265.9 (4)
C2—C3—C4—C53.5 (6)C10—C11—C12—C131.8 (4)
C3—C4—C5—C61.6 (6)C12i—C11—C12—C13120.0 (3)
C4—C5—C6—C7177.3 (3)C10—C11—C12—C11i121.9 (3)
C4—C5—C6—C12.6 (5)C12i—C11—C12—C11i0.0
C2—C1—C6—C7174.9 (3)C17—N1—C13—C146.2 (4)
C10—C1—C6—C77.3 (5)C18—N1—C13—C14172.5 (3)
C2—C1—C6—C55.0 (5)C17—N1—C13—C12165.3 (3)
C10—C1—C6—C5172.8 (3)C18—N1—C13—C1216.0 (4)
C5—C6—C7—C8179.8 (3)C11i—C12—C13—N1147.3 (3)
C1—C6—C7—C80.1 (5)C11—C12—C13—N1109.3 (3)
C6—C7—C8—C95.2 (5)C11i—C12—C13—C1441.5 (4)
C7—C8—C9—C102.7 (5)C11—C12—C13—C1461.9 (4)
C8—C9—C10—C14.8 (5)N1—C13—C14—C153.8 (5)
C8—C9—C10—C11164.7 (3)C12—C13—C14—C15167.6 (3)
C2—C1—C10—C9172.6 (3)C13—C14—C15—C161.5 (5)
C6—C1—C10—C99.6 (5)C14—C15—C16—C174.6 (5)
C2—C1—C10—C1117.3 (4)C13—N1—C17—C163.1 (5)
C6—C1—C10—C11160.5 (3)C18—N1—C17—C16175.6 (3)
C9—C10—C11—C12i1.1 (5)C15—C16—C17—N12.4 (5)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···I1i0.933.003.915 (3)169
C17—H17A···I1ii0.932.933.840 (3)167
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C14—H14A···I1i0.933.003.915 (3)169
C17—H17A···I1ii0.932.933.840 (3)167
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2.
Acknowledgements top

KC thanks the Crystal Materials Research Unit, Prince of Songkla University, for a research assistance fellowship. NW thanks the Prince of Songkla University for a oostdoctoral fellowship. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.

Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2048–o2049.

Fun, H.-K., Surasit, C., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2346–o2347.

Papaefstathiou, G. S., Friščić, T. & MacGillivray, L. R. (2002). J. Supramol. Chem. 2, 227–231.

Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yayli, N., Üçüncü, O., Yaşar, A., Gök, Y., Küçük, M. & Kolayli, S. (2004). Turk. J. Chem. 28, 515–521.