supplementary materials


is5026 scheme

Acta Cryst. (2012). E68, o224    [ doi:10.1107/S1600536811054298 ]

N-(5-Sulfanylidene-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide dimethyl sulfoxide disolvate

S. K. Kang, N. S. Cho and S. Jang

Abstract top

In the title compound, C4H5N3OS2·2C2H6OS, the five-membered heterocyclic ring and the N-(C=O)-C plane of the acetamide group are essentially co-planar, with a dihedral angle of 1.25 (3)°. Intermolecular N-H...O hydrogen bonds between the acetamide compound and the dimethyl sulfoxide molecules stabilize the crystal structure. The two dimethyl sulfoxide molecules are each disordered over two positions with occupancy ratios of 0.605 (2):0.395 (2) and 0.8629 (18):0.1371 (18).

Comment top

Thiadiazole derivatives have recently attracted attention in synthesis and biological activities (Hildebrandt et al., 2011; Zhan et al., 2009; Zhan et al., 2007). Our interest in thiadiazoles have formed systematic efforts to obtain new biologically active pyrimidines, purines and their analogs (Cho et al., 1993). 5-Amino-2H-1,2,4-thiadiazol-3-one is five-membered ring analog of cytosine. 5-Amino-3H-1,3,4-thiadiazole-2-thione is a sulfur analog of 5-amino-3H-1,3,4-thiadizol-2-one which is an isomer of 5-amino-2H-1,2,4-thiadiazol-3-one. Herein, the crystal structure of acetylation of 5-amino-3H-1,3,4-thiadiazole-2-thione, (I), is reported (Fig. 1).

The 1,3,4-thiadiazol-2-yl five-membered ring is planar, with a mean deviation of 0.008 Å from the corresponding least-squares plane defined by the seven constituent atoms. The bond distance of C3—N4 [1.2952 (23) Å] is shorter than that of N4—C1 [1.3365 (22) Å], which is consistent with double bond character. The dihedral angle between the 5-thioxo-1,3,4-thiadiazol-2-yl heterocyclic ring and the acetamide group is 1.25 (3) °, which is essentially planar. The crystal structure is stabilized by the intermolecular N—H···O hydrogen bonds between the compound and the DMSO molecules (Fig. 2 and Table 1).

Related literature top

For the synthesis and biological activity of thiadiazole compounds, see: Hildebrandt et al. (2011); Cho et al. (1993). For the structures of thiadiazole derivatives, see: Zhan et al. (2007, 2009).

Experimental top

5-Amino-3H-1,3,4-thiadiazole-2-thione (1.33 g, 0.011 mol) was dissolved in tetrahydrofuran (50 ml). Triethylamine(1.51 g, 0.015 mol) and a methyl benzoyl chloride (0.01 mol) were added to the solution and the mixture was refluxed with stirring for 4 h. Triethylamine hydrochloride was filtered off, the solution was concentrated to one-third of its original volume, and carefully acidified with concentrated hydrochloric acid. The precipitate was collected by filteration and recrystallized from aqueous ethanol to obtain an analytical product. Colorless crystals of (I) were obtained from its DMSO solution by slow evaporation of the solvent at room temperature.

Refinement top

Atoms H5 and H7 of the NH groups were located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å, and with Uiso(H) = 1.5Ueq(carrier C) for methyl H atoms. Two DMSO molecules are disordered with occupancy ratio, 0.605 (2):0.395 (2) and 0.8629 (18):0.1371 (18). Distance restraints [C—S = 1.81 (2) Å and SO = 1.50 (2) Å] were applied for the DMSO molecules in the refinement.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. DMSO molecules show only major parts. Intermolecular N—H···O hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing molecules linked by intermolecular N—H···O hydrogen bonds (dashed lines).
N-(5-Sulfanylidene-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide dimethyl sulfoxide disolvate top
Crystal data top
C4H5N3OS2·2C2H6OSZ = 2
Mr = 331.49F(000) = 348
Triclinic, P1Dx = 1.387 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.090 (2) ÅCell parameters from 8583 reflections
b = 9.982 (3) Åθ = 2.5–27.9°
c = 11.513 (3) ŵ = 0.60 mm1
α = 100.872 (6)°T = 296 K
β = 96.827 (4)°Block, colourless
γ = 91.359 (4)°0.28 × 0.18 × 0.13 mm
V = 793.6 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2625 reflections with I > 2σ(I)
graphiteRint = 0.180
φ and ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.894, Tmax = 0.916k = 1212
24389 measured reflectionsl = 1414
3292 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.016P]
where P = (Fo2 + 2Fc2)/3
3292 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.22 e Å3
7 restraintsΔρmin = 0.35 e Å3
Crystal data top
C4H5N3OS2·2C2H6OSγ = 91.359 (4)°
Mr = 331.49V = 793.6 (4) Å3
Triclinic, P1Z = 2
a = 7.090 (2) ÅMo Kα radiation
b = 9.982 (3) ŵ = 0.60 mm1
c = 11.513 (3) ÅT = 296 K
α = 100.872 (6)°0.28 × 0.18 × 0.13 mm
β = 96.827 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3292 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2625 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.916Rint = 0.180
24389 measured reflectionsθmax = 26.5°
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117Δρmax = 0.22 e Å3
S = 1.06Δρmin = 0.35 e Å3
3292 reflectionsAbsolute structure: ?
245 parametersFlack parameter: ?
7 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2794 (2)0.12725 (17)0.77693 (18)0.0551 (4)
S20.26666 (7)0.02071 (4)0.63771 (4)0.05621 (17)
C30.2555 (2)0.16373 (16)0.57197 (17)0.0504 (4)
N40.2592 (2)0.27936 (14)0.64572 (16)0.0618 (4)
N50.2732 (2)0.25591 (15)0.75980 (16)0.0604 (4)
H50.277 (4)0.323 (2)0.822 (2)0.113 (10)*
S60.29892 (10)0.07416 (6)0.90641 (5)0.0767 (2)
N70.2429 (2)0.15853 (15)0.45173 (15)0.0566 (4)
H70.238 (3)0.237 (2)0.432 (2)0.070 (6)*
C80.2374 (3)0.03883 (18)0.36972 (18)0.0577 (5)
C90.2250 (3)0.0526 (2)0.2426 (2)0.0721 (6)
H9A0.24050.14720.23820.108*
H9B0.1030.01680.20170.108*
H9C0.32340.00260.20580.108*
O100.2408 (2)0.07095 (13)0.40190 (14)0.0768 (4)
S110.14717 (14)0.51941 (8)0.37275 (8)0.0627 (4)0.605 (2)
O120.2642 (8)0.3906 (8)0.3592 (8)0.0824 (17)0.605 (2)
C130.265 (2)0.6272 (13)0.5029 (11)0.101 (4)0.605 (2)
H13A0.23990.59250.57210.151*0.605 (2)
H13B0.22050.71790.50810.151*0.605 (2)
H13C0.40.62960.49890.151*0.605 (2)
C140.2160 (13)0.6060 (7)0.2625 (7)0.068 (3)0.605 (2)
H14A0.17250.55320.18480.102*0.605 (2)
H14B0.3520.61810.27190.102*0.605 (2)
H14C0.16070.69360.2710.102*0.605 (2)
S11A0.3122 (2)0.52142 (13)0.37732 (12)0.0645 (5)0.395 (2)
O12A0.1799 (11)0.3913 (11)0.3575 (12)0.076 (2)0.395 (2)
C13A0.231 (3)0.6329 (17)0.4958 (14)0.080 (4)0.395 (2)
H13D0.27220.60430.56930.12*0.395 (2)
H13E0.09430.63160.48380.12*0.395 (2)
H13F0.28110.72390.4990.12*0.395 (2)
C14A0.220 (3)0.6115 (17)0.2720 (14)0.114 (7)0.395 (2)
H14D0.22690.55920.19380.171*0.395 (2)
H14E0.29120.69670.28210.171*0.395 (2)
H14F0.08930.62890.28150.171*0.395 (2)
S150.30211 (9)0.63050 (5)0.96900 (5)0.0570 (2)0.8629 (18)
O160.2521 (8)0.4816 (3)0.9404 (3)0.0775 (9)0.8629 (18)
C170.0886 (7)0.7112 (4)0.9385 (3)0.0873 (8)0.8629 (18)
H17A0.00470.69920.99570.131*0.8629 (18)
H17B0.0290.67160.85980.131*0.8629 (18)
H17C0.11560.8070.94330.131*0.8629 (18)
C180.4168 (7)0.6718 (6)0.8504 (5)0.096 (2)0.8629 (18)
H18A0.53940.63290.85140.144*0.8629 (18)
H18B0.4320.76920.85980.144*0.8629 (18)
H18C0.3410.63550.77580.144*0.8629 (18)
S15A0.2077 (7)0.6133 (4)0.8695 (4)0.0785 (16)0.1371 (18)
O16A0.235 (6)0.4742 (18)0.8952 (17)0.085 (7)0.1371 (18)
C17A0.136 (4)0.735 (3)0.9939 (13)0.084 (9)0.1371 (18)
H17D0.00930.71061.00590.126*0.1371 (18)
H17E0.1410.82480.97650.126*0.1371 (18)
H17F0.22150.7321.06470.126*0.1371 (18)
C18A0.444 (3)0.679 (2)0.876 (3)0.074 (9)0.1371 (18)
H18D0.52760.60420.86420.111*0.1371 (18)
H18E0.48210.73580.95240.111*0.1371 (18)
H18F0.45090.73110.81460.111*0.1371 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0548 (10)0.0387 (8)0.0736 (12)0.0039 (7)0.0097 (8)0.0141 (8)
S20.0670 (3)0.0319 (2)0.0721 (3)0.00558 (19)0.0085 (2)0.0157 (2)
C30.0503 (9)0.0337 (8)0.0705 (12)0.0047 (7)0.0102 (8)0.0162 (7)
N40.0803 (11)0.0341 (7)0.0735 (11)0.0070 (7)0.0120 (8)0.0148 (7)
N50.0752 (10)0.0376 (8)0.0700 (11)0.0056 (7)0.0123 (8)0.0125 (7)
S60.1065 (5)0.0548 (3)0.0725 (4)0.0054 (3)0.0090 (3)0.0227 (3)
N70.0644 (9)0.0363 (7)0.0729 (11)0.0053 (6)0.0091 (7)0.0196 (7)
C80.0561 (10)0.0457 (9)0.0719 (12)0.0033 (8)0.0072 (9)0.0132 (8)
C90.0815 (14)0.0619 (12)0.0734 (14)0.0056 (10)0.0078 (11)0.0155 (10)
O100.1132 (12)0.0372 (7)0.0806 (10)0.0058 (7)0.0118 (9)0.0129 (6)
S110.0750 (8)0.0494 (5)0.0673 (6)0.0013 (4)0.0127 (4)0.0184 (4)
O120.120 (4)0.0437 (17)0.093 (3)0.019 (3)0.030 (4)0.0259 (16)
C130.151 (8)0.073 (6)0.066 (5)0.012 (4)0.019 (4)0.000 (4)
C140.116 (6)0.040 (3)0.057 (4)0.003 (3)0.007 (3)0.032 (3)
S11A0.0768 (12)0.0559 (8)0.0666 (8)0.0172 (6)0.0152 (6)0.0216 (6)
O12A0.115 (6)0.036 (2)0.079 (4)0.008 (4)0.003 (5)0.020 (2)
C13A0.123 (9)0.061 (7)0.064 (8)0.008 (5)0.031 (7)0.020 (5)
C14A0.151 (16)0.097 (9)0.089 (10)0.037 (8)0.025 (9)0.004 (7)
S150.0831 (4)0.0407 (3)0.0477 (4)0.0060 (2)0.0121 (3)0.0067 (2)
O160.117 (2)0.0372 (13)0.080 (2)0.0071 (13)0.026 (2)0.0065 (14)
C170.096 (2)0.0585 (18)0.110.0158 (16)0.019 (3)0.019 (2)
C180.126 (4)0.093 (3)0.073 (3)0.013 (3)0.045 (3)0.012 (2)
S15A0.106 (3)0.056 (2)0.068 (3)0.000 (2)0.002 (2)0.0071 (18)
O16A0.159 (16)0.023 (6)0.064 (13)0.004 (7)0.029 (14)0.021 (7)
C17A0.15 (3)0.077 (14)0.039 (8)0.048 (15)0.054 (13)0.010 (10)
C18A0.103 (16)0.034 (9)0.067 (15)0.016 (9)0.030 (12)0.013 (8)
Geometric parameters (Å, °) top
C1—N51.337 (2)S11A—C13A1.754 (15)
C1—S61.666 (2)C13A—H13D0.96
C1—S21.740 (2)C13A—H13E0.96
S2—C31.7367 (17)C13A—H13F0.96
C3—N41.295 (2)C14A—H14D0.96
C3—N71.368 (2)C14A—H14E0.96
N4—N51.370 (2)C14A—H14F0.96
N5—H50.878 (17)S15—O161.486 (4)
N7—C81.373 (2)S15—C171.762 (4)
N7—H70.86 (2)S15—C181.777 (5)
C8—O101.221 (2)C17—H17A0.96
C8—C91.488 (3)C17—H17B0.96
C9—H9A0.96C17—H17C0.96
C9—H9B0.96C18—H18A0.96
C9—H9C0.96C18—H18B0.96
S11—O121.540 (7)C18—H18C0.96
S11—C141.772 (5)S15A—O16A1.485 (18)
S11—C131.777 (12)S15A—C18A1.772 (19)
C13—H13A0.96S15A—C17A1.822 (14)
C13—H13B0.96C17A—H17D0.96
C13—H13C0.96C17A—H17E0.96
C14—H14A0.96C17A—H17F0.96
C14—H14B0.96C18A—H18D0.96
C14—H14C0.96C18A—H18E0.96
S11A—O12A1.548 (11)C18A—H18F0.96
S11A—C14A1.720 (12)
N5—C1—S6127.50 (16)S11A—C13A—H13E109.5
N5—C1—S2107.67 (15)H13D—C13A—H13E109.5
S6—C1—S2124.82 (10)S11A—C13A—H13F109.5
C3—S2—C189.24 (9)H13D—C13A—H13F109.5
N4—C3—N7121.00 (16)H13E—C13A—H13F109.5
N4—C3—S2115.01 (15)S11A—C14A—H14D109.5
N7—C3—S2124.00 (13)S11A—C14A—H14E109.5
C3—N4—N5109.17 (14)H14D—C14A—H14E109.5
C1—N5—N4118.91 (17)S11A—C14A—H14F109.5
C1—N5—H5119 (2)H14D—C14A—H14F109.5
N4—N5—H5121.9 (19)H14E—C14A—H14F109.5
C3—N7—C8123.36 (16)O16—S15—C17105.9 (3)
C3—N7—H7113.9 (15)O16—S15—C18107.7 (3)
C8—N7—H7122.7 (15)C17—S15—C1897.3 (3)
O10—C8—N7120.52 (19)S15—C17—H17A109.5
O10—C8—C9123.44 (18)S15—C17—H17B109.5
N7—C8—C9116.04 (17)H17A—C17—H17B109.5
C8—C9—H9A109.5S15—C17—H17C109.5
C8—C9—H9B109.5H17A—C17—H17C109.5
H9A—C9—H9B109.5H17B—C17—H17C109.5
C8—C9—H9C109.5S15—C18—H18A109.5
H9A—C9—H9C109.5S15—C18—H18B109.5
H9B—C9—H9C109.5H18A—C18—H18B109.5
O12—S11—C14104.0 (4)S15—C18—H18C109.5
O12—S11—C13103.8 (6)H18A—C18—H18C109.5
C14—S11—C1399.9 (5)H18B—C18—H18C109.5
S11—C13—H13A109.5O16A—S15A—C18A102.8 (19)
S11—C13—H13B109.5O16A—S15A—C17A113.6 (12)
H13A—C13—H13B109.5C18A—S15A—C17A98.3 (14)
S11—C13—H13C109.5S15A—C17A—H17D109.5
H13A—C13—H13C109.5S15A—C17A—H17E109.5
H13B—C13—H13C109.5H17D—C17A—H17E109.5
S11—C14—H14A109.5S15A—C17A—H17F109.5
S11—C14—H14B109.5H17D—C17A—H17F109.5
H14A—C14—H14B109.5H17E—C17A—H17F109.5
S11—C14—H14C109.5S15A—C18A—H18D109.5
H14A—C14—H14C109.5S15A—C18A—H18E109.5
H14B—C14—H14C109.5H18D—C18A—H18E109.5
O12A—S11A—C14A104.9 (8)S15A—C18A—H18F109.5
O12A—S11A—C13A104.7 (7)H18D—C18A—H18F109.5
C14A—S11A—C13A93.7 (9)H18E—C18A—H18F109.5
S11A—C13A—H13D109.5
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O160.88 (2)1.91 (2)2.783 (3)170 (3)
N7—H7···O120.86 (2)1.89 (2)2.734 (8)166 (2)
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N5—H5···O160.88 (2)1.91 (2)2.783 (3)170 (3)
N7—H7···O120.86 (2)1.89 (2)2.734 (8)166 (2)
references
References top

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Cho, N. S., Kim, G. N. & Parkanyi, C. (1993). J. Heterocycl. Chem. 30, 397–401.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Hildebrandt, A., Schaarschmidt, D., van As, L., Swarts, J. C. & Lang, H. (2011). Inorg. Chim. Acta, 374, 112–118.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhan, P., Liu, X., Fang, Z., Li, Z., Pannecouque, C. & De Clercq, E. (2009). Eur. J. Med. Chem. 44, 4648–4653.

Zhan, J.-Y., Xiong, D.-J., Wang, Y.-G. & Li, H.-B. (2007). Acta Cryst. E63, o2184–o2185.