supplementary materials


is5032 scheme

Acta Cryst. (2012). E68, o247-o248    [ doi:10.1107/S1600536811054572 ]

Ethyl 2-(1,3-benzodioxol-5-yl)-1-[3-(1H-imidazol-1-yl)propyl]-1H-benzimidazole-5-carboxylate

Y. K. Yoon, M. A. Ali, T. S. Choon, S. I. J. Asik and I. A. Razak

Abstract top

In the title compound, C23H22N4O4, the essentially planar [maximum deviation = 0.022 (1) Å] benzimidazole ring system forms dihedral angles of 86.16 (7) and 37.38 (6)°, respectively, with the imidazole and benzene rings. The dioxolane ring adopts an envelope conformation with the methylene C atom at the flap. In the crystal, C-H...O and C-H...N interactions link the molecules into a ribbon along the a axis. The crystal packing is further stabilized by weak [pi]-[pi] stacking interactions [centroid-centroid distances = 3.5954 (8) and 3.7134 (8) Å] and C-H...[pi] interactions.

Comment top

Benzimidazole derivatives are of wide interest because of their diverse biological activities and various clinical applications. In particular, 2-substituted benzimidazoles have been proven as effective drug leads, thus generating pharmacological interests (Grassmann et al., 2002; Demirayak et al., 2002). As part of our ongoing structural studies of benzimidazole derivatives (Yoon et al., 2011), we now report the structure of the title compound.

Fig. 1 shows the molecular structure of the title compound. The benzimidazole (N1–N2/C1–C7) ring is approximately planar with a maximum deviation of 0.022 (1) Å for atoms C6 and C7. The mean plane through this ring forms dihedral angles of 86.16 (7) and 37.38 (6)° with the mean plane through the imidazole (N3/N4/C20–C22) and benzene (C8–C13) rings, respectively. The dioxolane (O3/O4/C11/C12/C23) ring adopts an envelope conformation with puckering parameters Q = 0.1209 (14) Å and φ = 138.2 (7)° with atom C23 at the flap (Cremer & Pople, 1975).

In the crystal packing of (Fig. 2), intermolecular C2—H2A···O3(x - 1/2, y, -z + 3/2), C15—H15B···O4(-1 + x, y, z) and C23—H23A···N4(2 - x, 2 - y, 1 - z) interactions form the molecules into ribbon stacked along the a-axis. ππ interactions are observed within the benzimidazole ring system between the imidazole (N1/N2/C1/C6–C7; centroid Cg2) and benzene, (C1–C6; centroid Cg4) rings with a Cg2···Cg4(1 - x , 2 - y, 1 - z) distance of 3.5954 (8) Å and between the benzene, (C1–C6; centroid Cg4) rings with a Cg4···Cg4 (1 - x, 2 - y, 1 - z) distance of 3.7134 (8) Å. The crystal packing are further stabilized by weak C—H···π interactions (Table 1) involving the benzene ring of the benzimidazole moiety and the dioxolane ring with the distances of 3.3005 (16) and 3.7282 (19) Å, respectively.

Related literature top

For the biological activity of benzimidazole derivatives, see: Grassmann et al. (2002); Demirayak et al. (2002). For puckering parameters, see: Cremer & Pople (1975). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For a related structure, see: Yoon et al. (2011).

Experimental top

Ethyl-4-[3-(1H-imidazol-1-yl)propylamino]-3-aminobenzoate (0.84 mmol) and sodium metabisulfite adduct of piperonal (1.68 mmol) were dissolved in DMF. The reaction mixture was reflux at 130 °C for 2 hrs. After completion, the reaction mixture was diluted in ethyl acetate (20 mL) and washed with water (20 mL). The organic layer was collected, dried over Na2SO4 and the evaporated in vacuo to yield the product. The product was recrystallised from ethyl acetate.

Refinement top

All the H atoms positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å. The Uiso values were constrained to be 1.5Ueq (methyl-H atom) and 1.2Ueq (other H atoms). The rotating model group was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing, viewed along the c-axis, showing the molecules are connected into ribbon along a axis. Hydrogen bonds are shown as dashed lines.
Ethyl 2-(1,3-benzodioxol-5-yl)-1-[3-(1H-imidazol-1-yl)propyl]- 1H-benzimidazole-5-carboxylate top
Crystal data top
C23H22N4O4F(000) = 1760
Mr = 418.45Dx = 1.403 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7948 reflections
a = 15.8554 (2) Åθ = 2.2–29.9°
b = 15.3988 (2) ŵ = 0.10 mm1
c = 16.2292 (2) ÅT = 100 K
V = 3962.43 (9) Å3Block, yellow
Z = 80.42 × 0.28 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5782 independent reflections
Radiation source: fine-focus sealed tube4429 reflections with I > 2σ(I)
graphiteRint = 0.054
φ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.960, Tmax = 0.981k = 1721
39067 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0539P)2 + 1.7654P]
where P = (Fo2 + 2Fc2)/3
5782 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C23H22N4O4V = 3962.43 (9) Å3
Mr = 418.45Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.8554 (2) ŵ = 0.10 mm1
b = 15.3988 (2) ÅT = 100 K
c = 16.2292 (2) Å0.42 × 0.28 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5782 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4429 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.981Rint = 0.054
39067 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.126Δρmax = 0.42 e Å3
S = 1.06Δρmin = 0.26 e Å3
5782 reflectionsAbsolute structure: ?
280 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21824 (6)0.91984 (8)0.49482 (7)0.0282 (3)
O20.25425 (7)0.90679 (7)0.62843 (7)0.0271 (2)
O30.89060 (6)0.92843 (7)0.71394 (6)0.0239 (2)
O40.98149 (6)0.84912 (7)0.63028 (7)0.0263 (2)
N10.58208 (7)0.86631 (8)0.59836 (7)0.0194 (2)
N20.61041 (7)0.87485 (8)0.46195 (7)0.0187 (2)
N30.79424 (8)0.84083 (8)0.26915 (7)0.0225 (3)
N40.91848 (9)0.89721 (9)0.30370 (9)0.0296 (3)
C10.50764 (8)0.87928 (9)0.55479 (8)0.0182 (3)
C20.42516 (8)0.88928 (9)0.58316 (9)0.0190 (3)
H2A0.41250.88650.64030.023*
C30.36188 (8)0.90350 (9)0.52518 (9)0.0191 (3)
C40.38044 (9)0.90927 (9)0.44011 (9)0.0202 (3)
H4A0.33600.91950.40210.024*
C50.46187 (9)0.90041 (9)0.41113 (8)0.0200 (3)
H5A0.47470.90480.35410.024*
C60.52433 (8)0.88464 (9)0.46988 (8)0.0182 (3)
C70.64171 (9)0.86485 (9)0.54132 (9)0.0184 (3)
C80.73210 (8)0.85749 (9)0.56059 (8)0.0182 (3)
C90.78806 (9)0.81167 (10)0.51027 (9)0.0212 (3)
H9A0.76710.78380.46220.025*
C100.87401 (9)0.80575 (10)0.52865 (9)0.0221 (3)
H10A0.91180.77420.49440.027*
C110.90130 (8)0.84735 (9)0.59813 (9)0.0196 (3)
C120.84659 (9)0.89351 (9)0.64855 (8)0.0185 (3)
C130.76188 (9)0.89913 (9)0.63259 (8)0.0195 (3)
H13A0.72480.92970.66830.023*
C140.27411 (9)0.91028 (9)0.55607 (9)0.0203 (3)
C150.13033 (9)0.92811 (14)0.51877 (11)0.0346 (4)
H15A0.11720.98920.53260.042*
H15B0.11850.89170.56770.042*
C160.07810 (10)0.89887 (12)0.44744 (11)0.0332 (4)
H16A0.01820.90390.46150.050*
H16B0.09140.83820.43460.050*
H16C0.09040.93530.39940.050*
C170.65550 (9)0.89081 (10)0.38489 (8)0.0205 (3)
H17A0.71540.90300.39760.025*
H17B0.63160.94310.35820.025*
C180.65105 (9)0.81489 (10)0.32436 (9)0.0239 (3)
H18A0.67170.76130.35150.029*
H18B0.59180.80530.30750.029*
C190.70487 (10)0.83430 (11)0.24854 (9)0.0270 (3)
H19A0.69680.78760.20740.032*
H19B0.68590.88960.22350.032*
C200.84682 (9)0.77241 (10)0.28605 (9)0.0241 (3)
H20A0.83320.71240.28390.029*
C210.92254 (10)0.80816 (10)0.30661 (9)0.0252 (3)
H21A0.97150.77590.32100.030*
C220.84051 (10)0.91387 (10)0.28135 (9)0.0273 (3)
H22A0.81880.97090.27450.033*
C230.97877 (9)0.91055 (11)0.69681 (9)0.0248 (3)
H23A1.00840.96470.68110.030*
H23B1.00660.88610.74630.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0160 (5)0.0441 (7)0.0245 (5)0.0033 (4)0.0008 (4)0.0050 (5)
O20.0243 (5)0.0349 (6)0.0220 (5)0.0040 (5)0.0030 (4)0.0006 (5)
O30.0217 (5)0.0320 (6)0.0181 (5)0.0026 (4)0.0009 (4)0.0034 (4)
O40.0179 (5)0.0356 (6)0.0253 (5)0.0013 (4)0.0006 (4)0.0055 (5)
N10.0199 (5)0.0202 (6)0.0182 (6)0.0012 (4)0.0008 (4)0.0003 (4)
N20.0174 (5)0.0210 (6)0.0178 (5)0.0014 (4)0.0011 (4)0.0003 (4)
N30.0263 (6)0.0261 (7)0.0151 (5)0.0031 (5)0.0024 (4)0.0009 (5)
N40.0328 (7)0.0283 (7)0.0276 (7)0.0050 (6)0.0045 (5)0.0027 (6)
C10.0212 (6)0.0171 (7)0.0163 (6)0.0011 (5)0.0008 (5)0.0002 (5)
C20.0213 (6)0.0182 (7)0.0174 (6)0.0007 (5)0.0011 (5)0.0007 (5)
C30.0193 (6)0.0179 (7)0.0199 (7)0.0012 (5)0.0011 (5)0.0007 (5)
C40.0199 (6)0.0210 (7)0.0196 (7)0.0010 (5)0.0018 (5)0.0015 (5)
C50.0223 (7)0.0218 (7)0.0160 (6)0.0009 (5)0.0003 (5)0.0005 (5)
C60.0183 (6)0.0173 (7)0.0188 (6)0.0002 (5)0.0014 (5)0.0009 (5)
C70.0209 (6)0.0160 (7)0.0184 (6)0.0010 (5)0.0009 (5)0.0008 (5)
C80.0201 (6)0.0170 (7)0.0176 (6)0.0002 (5)0.0010 (5)0.0020 (5)
C90.0220 (6)0.0197 (7)0.0220 (7)0.0011 (5)0.0014 (5)0.0037 (5)
C100.0211 (6)0.0217 (7)0.0236 (7)0.0020 (5)0.0025 (5)0.0027 (6)
C110.0172 (6)0.0205 (7)0.0212 (7)0.0015 (5)0.0010 (5)0.0034 (5)
C120.0229 (6)0.0180 (7)0.0146 (6)0.0022 (5)0.0000 (5)0.0015 (5)
C130.0217 (6)0.0198 (7)0.0171 (6)0.0019 (5)0.0010 (5)0.0002 (5)
C140.0206 (6)0.0172 (7)0.0230 (7)0.0010 (5)0.0000 (5)0.0002 (5)
C150.0174 (7)0.0565 (12)0.0300 (9)0.0047 (7)0.0029 (6)0.0029 (8)
C160.0223 (7)0.0453 (10)0.0320 (9)0.0005 (7)0.0004 (6)0.0054 (7)
C170.0214 (6)0.0228 (7)0.0173 (6)0.0009 (5)0.0023 (5)0.0007 (5)
C180.0228 (7)0.0275 (8)0.0215 (7)0.0005 (6)0.0025 (5)0.0044 (6)
C190.0279 (7)0.0372 (9)0.0159 (6)0.0055 (6)0.0021 (5)0.0030 (6)
C200.0296 (7)0.0215 (7)0.0213 (7)0.0032 (6)0.0015 (6)0.0030 (6)
C210.0272 (7)0.0266 (8)0.0219 (7)0.0011 (6)0.0032 (6)0.0003 (6)
C220.0381 (8)0.0224 (8)0.0215 (7)0.0003 (6)0.0041 (6)0.0029 (6)
C230.0207 (6)0.0318 (8)0.0219 (7)0.0028 (6)0.0013 (5)0.0010 (6)
Geometric parameters (Å, °) top
O1—C141.3396 (17)C8—C131.4140 (19)
O1—C151.4526 (18)C9—C101.3981 (19)
O2—C141.2170 (18)C9—H9A0.9500
O3—C121.3792 (16)C10—C111.367 (2)
O3—C231.4516 (18)C10—H10A0.9500
O4—C111.3745 (17)C11—C121.3883 (19)
O4—C231.4361 (19)C12—C131.3707 (19)
N1—C71.3233 (18)C13—H13A0.9500
N1—C11.3902 (17)C15—C161.493 (2)
N2—C61.3793 (17)C15—H15A0.9900
N2—C71.3889 (18)C15—H15B0.9900
N2—C171.4613 (17)C16—H16A0.9800
N3—C221.357 (2)C16—H16B0.9800
N3—C201.3713 (19)C16—H16C0.9800
N3—C191.460 (2)C17—C181.529 (2)
N4—C221.314 (2)C17—H17A0.9900
N4—C211.374 (2)C17—H17B0.9900
C1—C21.3950 (19)C18—C191.527 (2)
C1—C61.4055 (19)C18—H18A0.9900
C2—C31.3930 (19)C18—H18B0.9900
C2—H2A0.9500C19—H19A0.9900
C3—C41.414 (2)C19—H19B0.9900
C3—C141.4827 (19)C20—C211.362 (2)
C4—C51.3808 (19)C20—H20A0.9500
C4—H4A0.9500C21—H21A0.9500
C5—C61.3960 (19)C22—H22A0.9500
C5—H5A0.9500C23—H23A0.9900
C7—C81.4714 (18)C23—H23B0.9900
C8—C91.3971 (19)
C14—O1—C15116.47 (12)C8—C13—H13A121.5
C12—O3—C23105.42 (11)O2—C14—O1123.34 (13)
C11—O4—C23105.71 (11)O2—C14—C3124.47 (13)
C7—N1—C1104.66 (11)O1—C14—C3112.18 (12)
C6—N2—C7106.21 (11)O1—C15—C16107.36 (14)
C6—N2—C17123.07 (12)O1—C15—H15A110.2
C7—N2—C17129.61 (11)C16—C15—H15A110.2
C22—N3—C20106.20 (13)O1—C15—H15B110.2
C22—N3—C19127.97 (13)C16—C15—H15B110.2
C20—N3—C19125.67 (13)H15A—C15—H15B108.5
C22—N4—C21104.39 (13)C15—C16—H16A109.5
N1—C1—C2130.07 (13)C15—C16—H16B109.5
N1—C1—C6110.32 (12)H16A—C16—H16B109.5
C2—C1—C6119.58 (12)C15—C16—H16C109.5
C3—C2—C1118.01 (13)H16A—C16—H16C109.5
C3—C2—H2A121.0H16B—C16—H16C109.5
C1—C2—H2A121.0N2—C17—C18113.51 (12)
C2—C3—C4121.29 (13)N2—C17—H17A108.9
C2—C3—C14117.30 (12)C18—C17—H17A108.9
C4—C3—C14121.40 (12)N2—C17—H17B108.9
C5—C4—C3121.39 (13)C18—C17—H17B108.9
C5—C4—H4A119.3H17A—C17—H17B107.7
C3—C4—H4A119.3C19—C18—C17110.03 (13)
C4—C5—C6116.60 (13)C19—C18—H18A109.7
C4—C5—H5A121.7C17—C18—H18A109.7
C6—C5—H5A121.7C19—C18—H18B109.7
N2—C6—C5131.09 (13)C17—C18—H18B109.7
N2—C6—C1105.74 (12)H18A—C18—H18B108.2
C5—C6—C1123.12 (13)N3—C19—C18111.80 (12)
N1—C7—N2113.06 (12)N3—C19—H19A109.3
N1—C7—C8123.27 (12)C18—C19—H19A109.3
N2—C7—C8123.62 (12)N3—C19—H19B109.3
C9—C8—C13120.01 (13)C18—C19—H19B109.3
C9—C8—C7122.22 (12)H19A—C19—H19B107.9
C13—C8—C7117.77 (12)C21—C20—N3105.91 (14)
C8—C9—C10121.81 (13)C21—C20—H20A127.0
C8—C9—H9A119.1N3—C20—H20A127.0
C10—C9—H9A119.1C20—C21—N4110.72 (14)
C11—C10—C9117.00 (13)C20—C21—H21A124.6
C11—C10—H10A121.5N4—C21—H21A124.6
C9—C10—H10A121.5N4—C22—N3112.77 (14)
C10—C11—O4127.96 (13)N4—C22—H22A123.6
C10—C11—C12121.89 (13)N3—C22—H22A123.6
O4—C11—C12110.12 (12)O4—C23—O3107.33 (11)
C13—C12—O3128.07 (13)O4—C23—H23A110.2
C13—C12—C11122.22 (13)O3—C23—H23A110.2
O3—C12—C11109.69 (12)O4—C23—H23B110.2
C12—C13—C8117.05 (13)O3—C23—H23B110.2
C12—C13—H13A121.5H23A—C23—H23B108.5
C7—N1—C1—C2177.49 (15)C23—O4—C11—C10172.62 (15)
C7—N1—C1—C60.61 (16)C23—O4—C11—C129.19 (16)
N1—C1—C2—C3178.57 (14)C23—O3—C12—C13174.54 (15)
C6—C1—C2—C30.6 (2)C23—O3—C12—C116.74 (15)
C1—C2—C3—C41.1 (2)C10—C11—C12—C131.0 (2)
C1—C2—C3—C14177.48 (13)O4—C11—C12—C13177.28 (13)
C2—C3—C4—C50.5 (2)C10—C11—C12—O3179.84 (13)
C14—C3—C4—C5178.07 (13)O4—C11—C12—O31.53 (16)
C3—C4—C5—C60.7 (2)O3—C12—C13—C8179.77 (13)
C7—N2—C6—C5176.99 (15)C11—C12—C13—C81.7 (2)
C17—N2—C6—C58.0 (2)C9—C8—C13—C121.3 (2)
C7—N2—C6—C10.47 (15)C7—C8—C13—C12178.39 (12)
C17—N2—C6—C1169.43 (12)C15—O1—C14—O21.4 (2)
C4—C5—C6—N2178.25 (14)C15—O1—C14—C3179.31 (13)
C4—C5—C6—C11.2 (2)C2—C3—C14—O22.2 (2)
N1—C1—C6—N20.08 (16)C4—C3—C14—O2179.15 (14)
C2—C1—C6—N2178.25 (12)C2—C3—C14—O1177.08 (13)
N1—C1—C6—C5177.79 (13)C4—C3—C14—O11.5 (2)
C2—C1—C6—C50.5 (2)C14—O1—C15—C16155.28 (14)
C1—N1—C7—N20.93 (16)C6—N2—C17—C1881.03 (16)
C1—N1—C7—C8176.36 (13)C7—N2—C17—C18112.77 (16)
C6—N2—C7—N10.91 (16)N2—C17—C18—C19175.90 (12)
C17—N2—C7—N1168.90 (13)C22—N3—C19—C1899.29 (17)
C6—N2—C7—C8176.38 (13)C20—N3—C19—C1875.53 (18)
C17—N2—C7—C88.4 (2)C17—C18—C19—N364.76 (16)
N1—C7—C8—C9144.90 (15)C22—N3—C20—C210.74 (16)
N2—C7—C8—C938.1 (2)C19—N3—C20—C21176.49 (13)
N1—C7—C8—C1335.4 (2)N3—C20—C21—N40.52 (17)
N2—C7—C8—C13141.59 (14)C22—N4—C21—C200.09 (18)
C13—C8—C9—C100.3 (2)C21—N4—C22—N30.41 (17)
C7—C8—C9—C10179.35 (13)C20—N3—C22—N40.74 (17)
C8—C9—C10—C110.4 (2)C19—N3—C22—N4176.37 (13)
C9—C10—C11—O4178.02 (14)C11—O4—C23—O313.14 (15)
C9—C10—C11—C120.0 (2)C12—O3—C23—O412.24 (15)
Hydrogen-bond geometry (Å, °) top
Cg1 and Cg4 are the centroids of C11/C12/O3/C23/O4 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.952.483.3922 (17)162
C15—H15B···O4ii0.992.493.213 (2)130
C23—H23A···N4iii0.992.433.379 (2)159
C10—H10A···Cg4iv0.952.653.3005 (16)126
C16—H16C···Cg1v0.982.913.7282 (19)142
Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) x−1, y, z; (iii) −x+2, −y+2, −z+1; (iv) −x, y+3/2, −z+3/2; (v) −x+1, −y+2, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1 and Cg4 are the centroids of C11/C12/O3/C23/O4 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.952.483.3922 (17)162
C15—H15B···O4ii0.992.493.213 (2)130
C23—H23A···N4iii0.992.433.379 (2)159
C10—H10A···Cg4iv0.952.653.3005 (16)126
C16—H16C···Cg1v0.982.913.7282 (19)142
Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) x−1, y, z; (iii) −x+2, −y+2, −z+1; (iv) −x, y+3/2, −z+3/2; (v) −x+1, −y+2, −z+1.
Acknowledgements top

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grants Nos. 1001/PFIZIK/811151 and (1001/PSK/8620012). The authors also wish to express their thanks to the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Molecular Medicine, Universiti of Sains Malaysia, Penang.

references
References top

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Demirayak, Ş., Abu Mohsen, U. & Çaqri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255–260.

Grassmann, S., Sadek, B., Ligneau, X., Elz, S., Ganellin, C. R., Arrang, J. M., Schwartz, J. C., Stark, H. & Schunack, W. (2002). Eur. J. Pharm. Sci. 15, 367–378.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.