supplementary materials


is5034 scheme

Acta Cryst. (2012). E68, o226-o227    [ doi:10.1107/S1600536811054493 ]

N-(4,6-Dimethoxypyrimidin-2-yl)-2-(3-methylphenyl)acetamide

A. S. Praveen, J. P. Jasinski, J. A. Golen, H. S. Yathirajan and B. Narayana

Abstract top

In the title compound, C15H17N3O3, the dihedral angle between the pyrimidine and benzene rings is 87.0 (7)°. In the crystal, molecules are linked into inversion dimers with R22(8) graph-set motifs by a pair of N-H...O hydrogen bonds. Weak C-H...O hydrogen bonds and intermolecular [pi]-[pi] interactions [centroid-centroid distance = 3.544 (1) Å] are also observed.

Comment top

The pyrimidine ring is found in vitamins like thiamine, riboflavin and folic acid (Cox, 1968). Barbitone, the first barbiturate hypnotic sedative and anticonvulsant, is a pyrimidine derivative (Russell, 1945). N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010).

Crystal structures of some acetamidederivatives, viz., 2-[(5,7-dibromoquinolin-8-yl)oxy]-N-(2-methoxyphenyl)acetamide (Wen et al., 2010), N-(4-bromophenyl)-2-(2-thienyl)acetamide (Nogueira et al., 2010), N-[4-(benzylsulfamoyl)phenyl]acetamide (John et al., 2010), 2-(4-fluorophenyl)-N-{4-[6-(4-fluorophenyl)-2,3-dihydroimidazo [2,1-b][1,3]thiazol-5-yl]pyridin-2-yl}acetamide (Selig et al., 2010) and recently from our laboratories, N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011) have been reported. As part of our ongoing studies of amides, the title compound is synthesized and its crystal structure is reported.

In the crystal structure of the title compound, C15H17N3O3, the dihedral angle between the pyrimidine and benzene rings is 93.0 (7)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by N—H···O hydrogen bonds forming an R22(8) graph-set motif (Fig. 2). Weak C—H···O (Table 1) and ππ intermolecular interactions [centroid-centroid distance = 3.544 (1) Å] are also observed.

Related literature top

For the pyrimidine ring in vitamins, see: Cox (1968). For barbitone, the first barbiturate hypnotic sedative, see: Russell (1945). For the similarity of related N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: John et al. (2010); Nogueira et al. (2010); Praveen et al. (2011); Selig et al. (2010); Wen et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a stirred solution of (3-methylphenyl)acetic acid (1 g, 6.65 mmol), triethylamine (1.34 g, 13.31 mmol) and 4,6-dimethoxypyrimidin-2-amine (1.02 g, 6.65 mmol) in dichloromethane (10 ml), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide HCl (1.52 g, 7.93 mmol) was added at 273 K. Reaction mixture was stirred at room temperature for 3 h. After the completion of the reaction, the reaction mixture was poured to ice cold water and the layers were separated. Organic layer was washed with 10% aq.NaHCO3 solution (10 ml), brine (10 ml), dried over anhydrous Na2SO4, filtered and concentrated under vacuum to obtain the crude product which was triturated with ethanol and filtered to afford 1.62 g of the title compound (I) as a white solid in 84% yield. Single crystals were grown from ethanol by the slow evaporation method (m.p. 381-382 K).

Refinement top

Atom H3N was located in a difference Fourier map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93 Å (CH), 0.97 Å (CH2) or 0.96 Å (CH3). The Uiso(H) values were set to 1.2 (CH, CH2) or 1.5 CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed line represent N—H···O hydrogen bonds forming an R22(8) graph-set motif. The remaining H atoms have been removed for clarity.
N-(4,6-Dimethoxypyrimidin-2-yl)-2-(3-methylphenyl)acetamide top
Crystal data top
C15H17N3O3Z = 2
Mr = 287.32F(000) = 304
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1536 (6) ÅCell parameters from 3427 reflections
b = 8.2070 (7) Åθ = 3.1–32.3°
c = 13.8259 (10) ŵ = 0.09 mm1
α = 74.420 (7)°T = 173 K
β = 86.540 (6)°Chunk, colorless
γ = 69.186 (8)°0.42 × 0.34 × 0.22 mm
V = 730.30 (10) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4735 independent reflections
Radiation source: Enhance (Mo) X-ray Source3887 reflections with I > 2σ(I)
graphiteRint = 0.020
Detector resolution: 16.1500 pixels mm-1θmax = 32.3°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1012
Tmin = 0.961, Tmax = 0.980l = 2020
8350 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.156P]
where P = (Fo2 + 2Fc2)/3
4735 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H17N3O3γ = 69.186 (8)°
Mr = 287.32V = 730.30 (10) Å3
Triclinic, P1Z = 2
a = 7.1536 (6) ÅMo Kα radiation
b = 8.2070 (7) ŵ = 0.09 mm1
c = 13.8259 (10) ÅT = 173 K
α = 74.420 (7)°0.42 × 0.34 × 0.22 mm
β = 86.540 (6)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4735 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3887 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.980Rint = 0.020
8350 measured reflectionsθmax = 32.3°
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132Δρmax = 0.37 e Å3
S = 1.02Δρmin = 0.22 e Å3
4735 reflectionsAbsolute structure: ?
197 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53082 (13)0.72818 (11)0.19967 (6)0.03281 (19)
O20.68411 (13)0.78056 (10)0.11132 (7)0.03380 (19)
O31.08112 (15)0.05781 (10)0.12226 (7)0.0384 (2)
N10.71599 (12)0.47480 (11)0.07942 (6)0.02315 (17)
N20.79478 (12)0.50033 (10)0.08008 (6)0.02230 (17)
N30.90035 (13)0.22301 (11)0.03696 (7)0.02455 (18)
H3N0.902 (2)0.177 (2)0.0136 (11)0.029 (3)*
C10.5650 (2)0.60945 (19)0.26389 (9)0.0382 (3)
H1A0.70600.55700.27230.057*
H1B0.49870.67680.32820.057*
H1C0.51300.51520.23400.057*
C20.61661 (14)0.65189 (13)0.10610 (8)0.0241 (2)
C30.59691 (16)0.76447 (13)0.04444 (8)0.0276 (2)
H30.52490.88800.06420.033*
C40.69324 (15)0.67809 (13)0.04902 (8)0.02425 (19)
C50.79884 (13)0.40869 (12)0.01346 (7)0.02076 (18)
C60.80040 (19)0.69559 (16)0.20397 (9)0.0340 (2)
H6A0.75550.60200.24360.051*
H6B0.78460.78390.24040.051*
H6C0.93890.64400.19000.051*
C70.99644 (15)0.09987 (13)0.12367 (8)0.0244 (2)
C80.99476 (16)0.15771 (13)0.21836 (8)0.0254 (2)
H8A1.06980.23840.20880.030*
H8B0.85800.22390.23170.030*
C91.08408 (16)0.00098 (13)0.30737 (8)0.0268 (2)
C100.96179 (18)0.06648 (14)0.37637 (8)0.0291 (2)
H100.82370.01250.36620.035*
C111.0405 (2)0.21160 (16)0.46093 (9)0.0365 (3)
C121.2469 (2)0.28988 (17)0.47418 (10)0.0465 (3)
H121.30280.38630.52990.056*
C131.3710 (2)0.22672 (19)0.40569 (13)0.0509 (4)
H131.50910.28110.41580.061*
C141.29121 (19)0.08320 (17)0.32224 (11)0.0395 (3)
H141.37540.04180.27630.047*
C150.9033 (3)0.2773 (2)0.53551 (11)0.0532 (4)
H15A0.85170.35100.50950.080*
H15B0.79440.17550.54670.080*
H15C0.97650.34740.59780.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0345 (4)0.0291 (4)0.0288 (4)0.0088 (3)0.0081 (3)0.0008 (3)
O20.0394 (4)0.0197 (3)0.0398 (5)0.0029 (3)0.0054 (3)0.0126 (3)
O30.0558 (5)0.0174 (3)0.0345 (4)0.0007 (3)0.0127 (4)0.0084 (3)
N10.0225 (4)0.0204 (4)0.0253 (4)0.0070 (3)0.0003 (3)0.0044 (3)
N20.0225 (4)0.0166 (3)0.0269 (4)0.0053 (3)0.0003 (3)0.0064 (3)
N30.0291 (4)0.0165 (3)0.0264 (4)0.0042 (3)0.0036 (3)0.0072 (3)
C10.0366 (6)0.0473 (7)0.0269 (5)0.0117 (5)0.0025 (4)0.0072 (5)
C20.0207 (4)0.0226 (4)0.0264 (5)0.0082 (3)0.0015 (3)0.0007 (4)
C30.0272 (5)0.0162 (4)0.0343 (5)0.0042 (3)0.0032 (4)0.0021 (4)
C40.0231 (4)0.0177 (4)0.0315 (5)0.0058 (3)0.0008 (4)0.0077 (4)
C50.0192 (4)0.0170 (4)0.0257 (4)0.0065 (3)0.0009 (3)0.0049 (3)
C60.0396 (6)0.0300 (5)0.0348 (6)0.0103 (5)0.0018 (5)0.0148 (4)
C70.0264 (5)0.0181 (4)0.0277 (5)0.0061 (3)0.0028 (4)0.0061 (3)
C80.0285 (5)0.0194 (4)0.0254 (5)0.0042 (4)0.0018 (4)0.0066 (3)
C90.0311 (5)0.0195 (4)0.0272 (5)0.0044 (4)0.0052 (4)0.0067 (4)
C100.0358 (5)0.0253 (5)0.0268 (5)0.0091 (4)0.0025 (4)0.0092 (4)
C110.0591 (8)0.0274 (5)0.0258 (5)0.0168 (5)0.0020 (5)0.0084 (4)
C120.0640 (9)0.0279 (6)0.0379 (7)0.0077 (6)0.0185 (6)0.0002 (5)
C130.0398 (7)0.0373 (7)0.0596 (9)0.0001 (5)0.0188 (6)0.0012 (6)
C140.0319 (6)0.0319 (6)0.0466 (7)0.0050 (5)0.0050 (5)0.0044 (5)
C150.0867 (12)0.0447 (8)0.0335 (7)0.0317 (8)0.0095 (7)0.0086 (6)
Geometric parameters (Å, °) top
O1—C21.3528 (12)C6—H6C0.9600
O1—C11.4376 (16)C7—C81.5058 (14)
O2—C41.3404 (12)C8—C91.5038 (14)
O2—C61.4338 (14)C8—H8A0.9700
O3—C71.2235 (12)C8—H8B0.9700
N1—C21.3279 (12)C9—C101.3865 (16)
N1—C51.3356 (12)C9—C141.3947 (16)
N2—C51.3298 (12)C10—C111.3991 (16)
N2—C41.3373 (12)C10—H100.9300
N3—C71.3734 (13)C11—C121.386 (2)
N3—C51.3897 (12)C11—C151.507 (2)
N3—H3N0.875 (15)C12—C131.384 (2)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—C141.3842 (19)
C1—H1C0.9600C13—H130.9300
C2—C31.3843 (15)C14—H140.9300
C3—C41.3839 (15)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C6—H6A0.9600C15—H15C0.9600
C6—H6B0.9600
C2—O1—C1116.20 (9)O3—C7—C8121.00 (9)
C4—O2—C6117.71 (8)N3—C7—C8120.60 (8)
C2—N1—C5115.15 (8)C9—C8—C7111.97 (8)
C5—N2—C4114.87 (9)C9—C8—H8A109.2
C7—N3—C5132.24 (9)C7—C8—H8A109.2
C7—N3—H3N114.9 (10)C9—C8—H8B109.2
C5—N3—H3N112.9 (10)C7—C8—H8B109.2
O1—C1—H1A109.5H8A—C8—H8B107.9
O1—C1—H1B109.5C10—C9—C14119.05 (10)
H1A—C1—H1B109.5C10—C9—C8120.50 (10)
O1—C1—H1C109.5C14—C9—C8120.45 (10)
H1A—C1—H1C109.5C9—C10—C11121.81 (11)
H1B—C1—H1C109.5C9—C10—H10119.1
N1—C2—O1118.26 (9)C11—C10—H10119.1
N1—C2—C3124.09 (9)C12—C11—C10117.89 (12)
O1—C2—C3117.65 (9)C12—C11—C15121.62 (12)
C4—C3—C2114.49 (9)C10—C11—C15120.48 (13)
C4—C3—H3122.8C13—C12—C11121.00 (11)
C2—C3—H3122.8C13—C12—H12119.5
N2—C4—O2118.59 (9)C11—C12—H12119.5
N2—C4—C3124.04 (9)C14—C13—C12120.53 (13)
O2—C4—C3117.37 (9)C14—C13—H13119.7
N2—C5—N1127.35 (8)C12—C13—H13119.7
N2—C5—N3120.21 (9)C13—C14—C9119.71 (13)
N1—C5—N3112.44 (8)C13—C14—H14120.1
O2—C6—H6A109.5C9—C14—H14120.1
O2—C6—H6B109.5C11—C15—H15A109.5
H6A—C6—H6B109.5C11—C15—H15B109.5
O2—C6—H6C109.5H15A—C15—H15B109.5
H6A—C6—H6C109.5C11—C15—H15C109.5
H6B—C6—H6C109.5H15A—C15—H15C109.5
O3—C7—N3118.39 (9)H15B—C15—H15C109.5
C5—N1—C2—O1179.26 (8)C7—N3—C5—N1176.03 (10)
C5—N1—C2—C30.03 (14)C5—N3—C7—O3177.41 (11)
C1—O1—C2—N13.14 (14)C5—N3—C7—C83.42 (17)
C1—O1—C2—C3176.14 (9)O3—C7—C8—C96.82 (15)
N1—C2—C3—C41.02 (15)N3—C7—C8—C9172.33 (9)
O1—C2—C3—C4178.21 (9)C7—C8—C9—C10101.24 (11)
C5—N2—C4—O2179.18 (9)C7—C8—C9—C1479.42 (13)
C5—N2—C4—C30.40 (14)C14—C9—C10—C110.61 (16)
C6—O2—C4—N25.94 (15)C8—C9—C10—C11178.73 (10)
C6—O2—C4—C3173.67 (10)C9—C10—C11—C120.16 (17)
C2—C3—C4—N21.26 (15)C9—C10—C11—C15178.87 (11)
C2—C3—C4—O2178.33 (9)C10—C11—C12—C130.20 (19)
C4—N2—C5—N10.87 (14)C15—C11—C12—C13179.23 (13)
C4—N2—C5—N3179.79 (9)C11—C12—C13—C140.1 (2)
C2—N1—C5—N21.08 (14)C12—C13—C14—C90.4 (2)
C2—N1—C5—N3179.93 (8)C10—C9—C14—C130.70 (19)
C7—N3—C5—N24.91 (16)C8—C9—C14—C13178.65 (12)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O3i0.875 (15)1.979 (15)2.8535 (12)176.0 (14)
C3—H3···O2ii0.932.523.4459 (12)177.
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+2, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O3i0.875 (15)1.979 (15)2.8535 (12)176.0 (14)
C3—H3···O2ii0.932.523.4459 (12)177.
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+2, −z.
Acknowledgements top

ASP thanks the UoM for research facilities. BN thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Cox, R. A. (1968). Q. Rev. Chem. Soc. 22, 499–526.

John, P., Ahmad, W., Khan, I. U., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2048.

Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.

Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.

Nogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177.

Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.

Russell, J. A. (1945). Annu. Rev. Biochem. 14, 309–332.

Selig, R., Schollmeyer, D., Albrecht, W. & Laufer, S. (2010). Acta Cryst. E66, o1132.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wen, Y.-H., Qin, H.-Q. & Wen, H.-L. (2010). Acta Cryst. E66, o3294.

Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207– 2215.

Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.