organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(3S)-5-Oxooxolan-3-yl]isoindoline-1,3-dione

aDepartment of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Sichuan Key Laboratory of Characteristic Plant Development and Research, Sichuan Dazhou 635000, People's Republic of China
*Correspondence e-mail: wjh686@163.com

(Received 29 October 2011; accepted 29 November 2011; online 3 December 2011)

The oxolan-2-one ring in the title compound, C12H9NO4, has an envelope conformation with the atom linking the two five-membered rings being the flap atom.

Related literature

For the synthesis of the title compound, see: Temperini et al. (2010[Temperini, A., Capperucci, A., Degl'Innocenti, A., Terlizzi, R. & Tiecco, M. (2010). Tetrahedron Lett. 51, 4121-4124.]). For the structure of the closely related compound, 2-(2,5-dioxotetra­hydro­furan-3-yl)isoindoline-1,3-dione, see: Qian (2008[Qian, S.-S. (2008). Acta Cryst. E64, o1663.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9NO4

  • Mr = 231.20

  • Orthorhombic, P 21 21 21

  • a = 5.7224 (3) Å

  • b = 10.5839 (5) Å

  • c = 16.8532 (10) Å

  • V = 1020.72 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.984

  • 4468 measured reflections

  • 1077 independent reflections

  • 1002 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.20

  • 1077 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound is a key intermediate in our organic synthesis work. It was originally synthesized by Temperini et al. (2010). We report herein its crystal structure.

The molecular structure of the title compound (I) is shown in Fig. 1. The structure of the closely related compound, 2-(2,5-Dioxotetrahydrofuran-3-yl)isoindoline-1,3-dione, has already been published (Qian, 2008). In (I) The five-membered ring is in an envelope conformation.

Related literature top

For the synthesis of the title compound, see: Temperini et al. (2010). For the structure of the closely related compound, 2-(2,5-dioxotetrahydrofuran-3-yl)isoindoline-1,3-dione, see: Qian (2008).

Experimental top

The title compound was prepared from L-Aspartic acid as starting material. First, the amino acid was converted into the Cbz-protected lactone. Then, the Cbz-protected lactone (2.34 g, 10 mmoL) was hydrogenated at 1 atm with phthalic anhydride (1.78 g, 12 mmoL) in 30 mL of DMF and 0.53 g of 10% Pd/C. Single crystals suitable for X-ray diffraction were obtained by evaporation of the a DMF solution of the title compound.

Refinement top

H atoms were placed in calculated positions and treated as riding atoms with C-H= 0.93 - 0.98 Å, with Uiso(H)=1.2Ueq(C). In the absense of significant anomalous dispersion effects the Friedel pairs were merged. The absolute configuration was based on that of the starting material.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of with displacement ellipsoids drawn at the 20% probability level.
2-[(3S)-5-Oxooxolan-3-yl]isoindoline-1,3-dione top
Crystal data top
C12H9NO4F(000) = 480
Mr = 231.20Dx = 1.505 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2599 reflections
a = 5.7224 (3) Åθ = 2.3–27.2°
b = 10.5839 (5) ŵ = 0.12 mm1
c = 16.8532 (10) ÅT = 296 K
V = 1020.72 (9) Å3Block, colourless
Z = 40.20 × 0.20 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1077 independent reflections
Radiation source: fine-focus sealed tube1002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.977, Tmax = 0.984k = 1212
4468 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.0827P]
where P = (Fo2 + 2Fc2)/3
1077 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C12H9NO4V = 1020.72 (9) Å3
Mr = 231.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7224 (3) ŵ = 0.12 mm1
b = 10.5839 (5) ÅT = 296 K
c = 16.8532 (10) Å0.20 × 0.20 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1077 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1002 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.021
4468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.20Δρmax = 0.10 e Å3
1077 reflectionsΔρmin = 0.13 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8388 (3)0.49330 (17)0.93941 (11)0.0362 (4)
C20.6577 (4)0.5765 (2)0.95245 (13)0.0445 (5)
H20.54240.59000.91450.053*
C30.6548 (4)0.6395 (2)1.02494 (13)0.0493 (5)
H30.53470.69601.03600.059*
C40.8280 (4)0.6193 (2)1.08081 (13)0.0501 (5)
H40.82200.66271.12880.060*
C51.0100 (4)0.5361 (2)1.06693 (13)0.0470 (5)
H51.12680.52321.10440.056*
C61.0115 (3)0.47294 (17)0.99517 (11)0.0365 (4)
C71.1748 (3)0.37695 (18)0.96411 (11)0.0366 (4)
C80.8880 (3)0.41079 (18)0.87031 (11)0.0371 (4)
C91.2036 (4)0.2499 (2)0.83890 (11)0.0422 (5)
H91.33920.21520.86690.051*
C101.0378 (4)0.1429 (2)0.81692 (13)0.0500 (6)
H10A1.11730.06210.81920.060*
H10B0.90510.14080.85270.060*
C110.9611 (4)0.1714 (2)0.73468 (13)0.0449 (5)
C121.2804 (4)0.2984 (2)0.75729 (11)0.0524 (6)
H12A1.29110.38980.75750.063*
H12B1.43180.26390.74320.063*
N11.0948 (3)0.34698 (16)0.88763 (9)0.0351 (4)
O11.3448 (3)0.33039 (14)0.99497 (8)0.0510 (4)
O20.7776 (3)0.39782 (15)0.80953 (9)0.0510 (4)
O31.1040 (3)0.25678 (15)0.70162 (8)0.0522 (4)
O40.8005 (3)0.12687 (16)0.69809 (11)0.0653 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (10)0.0372 (10)0.0356 (10)0.0026 (9)0.0013 (9)0.0020 (8)
C20.0405 (11)0.0454 (11)0.0476 (12)0.0047 (9)0.0003 (10)0.0038 (10)
C30.0514 (12)0.0423 (11)0.0543 (13)0.0063 (11)0.0120 (11)0.0014 (10)
C40.0613 (13)0.0461 (11)0.0429 (12)0.0036 (11)0.0050 (11)0.0071 (10)
C50.0543 (12)0.0460 (12)0.0406 (12)0.0020 (10)0.0040 (10)0.0038 (9)
C60.0408 (9)0.0344 (10)0.0342 (10)0.0010 (8)0.0003 (9)0.0027 (8)
C70.0396 (10)0.0371 (10)0.0332 (10)0.0022 (9)0.0040 (9)0.0023 (8)
C80.0360 (9)0.0384 (10)0.0369 (10)0.0005 (8)0.0034 (9)0.0024 (8)
C90.0442 (10)0.0453 (11)0.0371 (11)0.0112 (10)0.0067 (9)0.0038 (9)
C100.0698 (14)0.0366 (11)0.0436 (12)0.0036 (11)0.0023 (11)0.0004 (9)
C110.0484 (13)0.0404 (11)0.0460 (12)0.0097 (10)0.0052 (10)0.0094 (10)
C120.0452 (12)0.0686 (16)0.0435 (12)0.0027 (12)0.0070 (10)0.0075 (11)
N10.0370 (8)0.0379 (9)0.0306 (8)0.0039 (7)0.0028 (7)0.0008 (7)
O10.0515 (8)0.0563 (9)0.0452 (8)0.0123 (8)0.0160 (8)0.0030 (7)
O20.0479 (8)0.0621 (10)0.0430 (8)0.0088 (8)0.0144 (7)0.0063 (7)
O30.0560 (8)0.0674 (10)0.0331 (8)0.0037 (9)0.0010 (7)0.0007 (8)
O40.0620 (9)0.0601 (10)0.0737 (11)0.0063 (9)0.0234 (10)0.0173 (9)
Geometric parameters (Å, º) top
C1—C21.378 (3)C8—O21.211 (2)
C1—C61.381 (3)C8—N11.394 (2)
C1—C81.482 (3)C9—N11.455 (2)
C2—C31.392 (3)C9—C101.523 (3)
C2—H20.9300C9—C121.532 (3)
C3—C41.383 (3)C9—H90.9800
C3—H30.9300C10—C111.484 (3)
C4—C51.384 (3)C10—H10A0.9700
C4—H40.9300C10—H10B0.9700
C5—C61.382 (3)C11—O41.203 (2)
C5—H50.9300C11—O31.340 (3)
C6—C71.476 (3)C12—O31.446 (3)
C7—O11.208 (2)C12—H12A0.9700
C7—N11.404 (2)C12—H12B0.9700
C2—C1—C6121.98 (18)N1—C9—C12113.13 (18)
C2—C1—C8130.15 (18)C10—C9—C12102.07 (17)
C6—C1—C8107.87 (16)N1—C9—H9109.4
C1—C2—C3117.1 (2)C10—C9—H9109.4
C1—C2—H2121.5C12—C9—H9109.4
C3—C2—H2121.5C11—C10—C9105.11 (18)
C4—C3—C2121.0 (2)C11—C10—H10A110.7
C4—C3—H3119.5C9—C10—H10A110.7
C2—C3—H3119.5C11—C10—H10B110.7
C3—C4—C5121.5 (2)C9—C10—H10B110.7
C3—C4—H4119.3H10A—C10—H10B108.8
C5—C4—H4119.3O4—C11—O3121.1 (2)
C6—C5—C4117.4 (2)O4—C11—C10128.7 (2)
C6—C5—H5121.3O3—C11—C10110.14 (18)
C4—C5—H5121.3O3—C12—C9106.29 (18)
C1—C6—C5121.05 (19)O3—C12—H12A110.5
C1—C6—C7108.61 (16)C9—C12—H12A110.5
C5—C6—C7130.32 (19)O3—C12—H12B110.5
O1—C7—N1124.45 (19)C9—C12—H12B110.5
O1—C7—C6129.62 (19)H12A—C12—H12B108.7
N1—C7—C6105.93 (15)C8—N1—C7111.08 (16)
O2—C8—N1124.41 (18)C8—N1—C9125.97 (16)
O2—C8—C1129.20 (18)C7—N1—C9122.54 (16)
N1—C8—C1106.39 (16)C11—O3—C12111.18 (16)
N1—C9—C10113.28 (16)
C6—C1—C2—C30.3 (3)C12—C9—C10—C1121.9 (2)
C8—C1—C2—C3178.4 (2)C9—C10—C11—O4165.3 (2)
C1—C2—C3—C40.4 (3)C9—C10—C11—O316.2 (2)
C2—C3—C4—C50.0 (3)N1—C9—C12—O3101.25 (19)
C3—C4—C5—C60.4 (3)C10—C9—C12—O320.8 (2)
C2—C1—C6—C50.2 (3)O2—C8—N1—C7176.92 (19)
C8—C1—C6—C5179.17 (18)C1—C8—N1—C73.3 (2)
C2—C1—C6—C7178.63 (17)O2—C8—N1—C94.1 (3)
C8—C1—C6—C70.3 (2)C1—C8—N1—C9176.10 (18)
C4—C5—C6—C10.6 (3)O1—C7—N1—C8176.68 (18)
C4—C5—C6—C7177.97 (19)C6—C7—N1—C83.45 (19)
C1—C6—C7—O1177.9 (2)O1—C7—N1—C93.6 (3)
C5—C6—C7—O10.8 (4)C6—C7—N1—C9176.58 (16)
C1—C6—C7—N12.3 (2)C10—C9—N1—C852.5 (3)
C5—C6—C7—N1179.1 (2)C12—C9—N1—C863.0 (2)
C2—C1—C8—O20.4 (4)C10—C9—N1—C7119.54 (18)
C6—C1—C8—O2178.5 (2)C12—C9—N1—C7124.9 (2)
C2—C1—C8—N1179.41 (19)O4—C11—O3—C12178.82 (19)
C6—C1—C8—N11.7 (2)C10—C11—O3—C122.6 (2)
N1—C9—C10—C11100.02 (19)C9—C12—O3—C1112.1 (2)

Experimental details

Crystal data
Chemical formulaC12H9NO4
Mr231.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.7224 (3), 10.5839 (5), 16.8532 (10)
V3)1020.72 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
4468, 1077, 1002
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.20
No. of reflections1077
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.13

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Scientific Research Foundation of Sichuan University of Arts and Science (No. 2010A05Z).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationQian, S.-S. (2008). Acta Cryst. E64, o1663.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTemperini, A., Capperucci, A., Degl'Innocenti, A., Terlizzi, R. & Tiecco, M. (2010). Tetrahedron Lett. 51, 4121–4124.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds