organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Di-tert-butyl-4,4′-di­methyl-2,2′-[1,2-phenyl­enebis(nitrilo­methanylyl­­idene)]diphenol

aDepartment of Pharmacy, Jining Medical College, Xueyuan Road 669, Rizhao, People's Republic of China
*Correspondence e-mail: wqb_wangqibao@163.com

(Received 2 November 2011; accepted 29 November 2011; online 7 December 2011)

In the title mol­ecule, C30H36N2O2, the dihedral angles between the central benzene ring and the two benzene rings of the butyl­salicylaldimine groups are 14.3 (2) and 40.6 (2)°. There are two strong intra­molecular O—H⋯N hydrogen bonds which form S(6) rings. The crystal studied was a non-merohedral twin with refined components of 0.270 (4) and 0.730 (4).

Related literature

For applications of Schiff base ligands in pharmaceutical and catalytic research, see: Hashimoto & Maruoka (2007[Hashimoto, T. & Maruoka, K. (2007). Chem. Rev. 107, 5656-5682.]); Singh et al. (2009[Singh, S., Bharti, N. & Mohapatra, P. P. (2009). Chem. Rev. 109, 1900-1947.]). For a related structure, see: You et al. (2010[You, W., Yao, C. & Huang, W. (2010). Chin. J. Inorg. Chem. pp. 867-874.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C30H36N2O2

  • Mr = 456.61

  • Triclinic, [P \overline 1]

  • a = 10.578 (7) Å

  • b = 11.394 (7) Å

  • c = 12.217 (7) Å

  • α = 72.195 (6)°

  • β = 73.525 (6)°

  • γ = 72.975 (6)°

  • V = 1309.8 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.989

  • 4593 measured reflections

  • 4593 independent reflections

  • 2894 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.271

  • S = 1.13

  • 4593 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.89 2.605 (4) 145
O2—H2⋯N2 0.82 1.87 2.609 (4) 149

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands attract much attention in pharmaceutical fields as well as in catalytic research. Here we report the molecular structure of a tetradentate Schiff base ligand, which is shown in Fig. 1.

The dihedral angles between the central benzene ring and the two benzene rings butylsalicylaldimine groups are 14.3 (2)° (C8-C13) and 40.6 (2)° (C20-C25). There are two strong intramolecular O—H···N hydrogen bonds which form S(6) rings (Bernstein et al., 1995). The hydrogen bonding in the title compound is different to that reported in the related structure (You et al., 2010) possibly owing to the steric effects of the bulky t-butyl substituents.

Related literature top

For applications of Schiff base ligands in pharmaceutical and catalytic research, see: Hashimoto & Maruoka (2007); Singh et al. (2009). For a related structure, see: You et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

5-methyl-3-t-butyl-2-hydroxybenzaldehyde (0.192 g, 1 mmol) dissolved in 20 ml ethanol, then 1,2-phenylenediamine (0.043 g, 0.5 mmol) in 20 ml ethanol was added. The mixture was stirred at 323K for 5 h. The solution was cooled to room temperature and the resulting orange solid was collected, washed by cold ethanol and dried in vacuo. Yield: 0.175 g, 80.6%. Cooling the ethanol solution to room temperature gave orange crystals suitable for X-ray diffraction measurement.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å; O—H = 0.82Å and with Uiso(H) = 1.2 times Ueq(C) or Uiso(H) = 1.5 times Ueq(Cmethyl,O). Analysis of the structure in PLATON (Spek, 2009) revealed the crystal was a non-merohedral twin with twin law (110)[432]. The ratio of the twin components refined to 0.270 (4):0.730 (4).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
6,6'-Di-tert-butyl-4,4'-dimethyl-2,2'-[1,2- phenylenebis(nitrilomethanylylidene)]diphenol top
Crystal data top
C30H36N2O2Z = 2
Mr = 456.61F(000) = 492
Triclinic, P1Dx = 1.158 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.578 (7) ÅCell parameters from 3022 reflections
b = 11.394 (7) Åθ = 2.4–24.5°
c = 12.217 (7) ŵ = 0.07 mm1
α = 72.195 (6)°T = 296 K
β = 73.525 (6)°Block, orange
γ = 72.975 (6)°0.28 × 0.22 × 0.15 mm
V = 1309.8 (14) Å3
Data collection top
Bruker SMART CCD
diffractometer
4593 independent reflections
Radiation source: fine-focus sealed tube2894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.980, Tmax = 0.989k = 1313
4593 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.271H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1477P)2 + 0.0358P]
where P = (Fo2 + 2Fc2)/3
4593 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C30H36N2O2γ = 72.975 (6)°
Mr = 456.61V = 1309.8 (14) Å3
Triclinic, P1Z = 2
a = 10.578 (7) ÅMo Kα radiation
b = 11.394 (7) ŵ = 0.07 mm1
c = 12.217 (7) ÅT = 296 K
α = 72.195 (6)°0.28 × 0.22 × 0.15 mm
β = 73.525 (6)°
Data collection top
Bruker SMART CCD
diffractometer
4593 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2894 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.989Rint = 0.000
4593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.271H-atom parameters constrained
S = 1.13Δρmax = 0.29 e Å3
4593 reflectionsΔρmin = 0.30 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2830 (3)0.5924 (3)0.9145 (3)0.0503 (7)
N20.4261 (3)0.7498 (3)0.7380 (2)0.0519 (8)
O10.0609 (2)0.7680 (2)0.9079 (2)0.0631 (8)
H10.14310.74030.89500.095*
O20.2253 (2)0.9257 (2)0.6653 (3)0.0643 (8)
H20.26840.85460.69110.096*
C10.4186 (3)0.5407 (3)0.8651 (3)0.0481 (9)
C20.4834 (4)0.4144 (4)0.8975 (4)0.0618 (10)
H2A0.43670.35940.95710.074*
C30.6136 (4)0.3682 (4)0.8448 (4)0.0673 (11)
H30.65420.28290.86820.081*
C40.6842 (4)0.4480 (4)0.7573 (4)0.0667 (11)
H40.77290.41710.72130.080*
C50.6236 (4)0.5733 (4)0.7231 (3)0.0616 (10)
H50.67170.62690.66320.074*
C60.4910 (3)0.6220 (3)0.7765 (3)0.0494 (9)
C70.2184 (3)0.5328 (3)1.0093 (3)0.0513 (9)
H70.26460.45561.04860.062*
C80.0780 (3)0.5772 (3)1.0597 (3)0.0474 (8)
C90.0143 (4)0.5004 (3)1.1613 (3)0.0507 (9)
H90.06500.42321.19600.061*
C100.1199 (3)0.5353 (3)1.2109 (3)0.0479 (8)
C110.1908 (3)0.6540 (3)1.1575 (3)0.0462 (8)
H110.28150.68011.19160.055*
C120.1352 (3)0.7354 (3)1.0573 (3)0.0443 (8)
C130.0023 (3)0.6937 (3)1.0077 (3)0.0473 (8)
C140.1909 (4)0.4504 (4)1.3160 (3)0.0625 (10)
H14A0.13960.36461.32310.094*
H14B0.27940.45611.30600.094*
H14C0.19880.47631.38580.094*
C150.2195 (3)0.8652 (3)1.0034 (3)0.0493 (9)
C160.3626 (4)0.8925 (4)1.0780 (4)0.0667 (11)
H16A0.35790.88851.15640.100*
H16B0.40930.83081.08050.100*
H16C0.41050.97541.04400.100*
C170.1554 (4)0.9714 (4)0.9985 (4)0.0663 (11)
H17A0.21001.05160.96650.099*
H17B0.06620.96080.94940.099*
H17C0.14990.96841.07640.099*
C180.2286 (4)0.8684 (4)0.8795 (3)0.0718 (12)
H18A0.27660.95090.84440.108*
H18B0.27590.80620.88430.108*
H18C0.13910.85020.83220.108*
C190.4916 (3)0.8371 (4)0.7072 (3)0.0520 (9)
H190.58060.81460.71610.062*
C200.4349 (3)0.9685 (3)0.6595 (3)0.0473 (8)
C210.5145 (3)1.0562 (4)0.6317 (3)0.0538 (9)
H210.60341.02800.64130.065*
C220.4643 (3)1.1837 (4)0.5903 (3)0.0515 (9)
C230.3297 (3)1.2211 (3)0.5787 (3)0.0509 (9)
H230.29361.30720.55370.061*
C240.2463 (3)1.1391 (3)0.6016 (3)0.0459 (8)
C250.3013 (3)1.0107 (3)0.6425 (3)0.0471 (8)
C260.5487 (4)1.2799 (4)0.5618 (4)0.0772 (12)
H26A0.52231.32290.62400.116*
H26B0.53491.34020.48920.116*
H26C0.64261.23770.55410.116*
C270.1000 (3)1.1870 (3)0.5839 (3)0.0521 (9)
C280.0004 (4)1.1451 (4)0.6987 (4)0.0799 (14)
H28A0.09061.17280.68490.120*
H28B0.00511.18170.75780.120*
H28C0.02161.05450.72510.120*
C290.0872 (4)1.1343 (4)0.4862 (4)0.0758 (13)
H29A0.11151.04350.50820.114*
H29B0.14661.16470.41390.114*
H29C0.00441.16180.47590.114*
C300.0582 (4)1.3314 (4)0.5466 (4)0.0647 (11)
H30A0.03281.35630.53480.097*
H30B0.11811.36180.47460.097*
H30C0.06311.36660.60690.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0436 (15)0.0505 (18)0.0563 (18)0.0057 (13)0.0101 (14)0.0173 (15)
N20.0491 (16)0.0522 (19)0.0444 (16)0.0018 (15)0.0067 (13)0.0099 (14)
O10.0528 (14)0.0578 (17)0.0587 (16)0.0115 (12)0.0020 (12)0.0004 (13)
O20.0534 (15)0.0452 (15)0.087 (2)0.0099 (12)0.0198 (14)0.0028 (14)
C10.0416 (18)0.051 (2)0.054 (2)0.0017 (16)0.0157 (16)0.0193 (17)
C20.059 (2)0.048 (2)0.074 (3)0.0061 (18)0.0136 (19)0.0160 (19)
C30.062 (2)0.051 (2)0.085 (3)0.006 (2)0.024 (2)0.022 (2)
C40.048 (2)0.070 (3)0.073 (3)0.011 (2)0.0123 (19)0.029 (2)
C50.050 (2)0.066 (3)0.055 (2)0.0009 (19)0.0050 (17)0.0155 (19)
C60.0471 (19)0.054 (2)0.0427 (19)0.0037 (16)0.0139 (15)0.0156 (16)
C70.051 (2)0.050 (2)0.054 (2)0.0072 (17)0.0147 (17)0.0160 (17)
C80.0481 (19)0.050 (2)0.0460 (19)0.0087 (16)0.0132 (15)0.0144 (16)
C90.057 (2)0.047 (2)0.048 (2)0.0074 (16)0.0198 (16)0.0065 (16)
C100.055 (2)0.051 (2)0.0390 (17)0.0168 (17)0.0150 (15)0.0042 (15)
C110.0444 (18)0.055 (2)0.0429 (19)0.0156 (16)0.0097 (14)0.0127 (16)
C120.0442 (18)0.048 (2)0.0417 (18)0.0101 (15)0.0112 (14)0.0108 (15)
C130.0501 (19)0.050 (2)0.0397 (17)0.0143 (16)0.0068 (15)0.0072 (15)
C140.068 (2)0.064 (3)0.052 (2)0.025 (2)0.0168 (18)0.0032 (18)
C150.0489 (19)0.049 (2)0.0466 (19)0.0091 (16)0.0141 (15)0.0057 (16)
C160.053 (2)0.062 (3)0.075 (3)0.0029 (19)0.0141 (19)0.012 (2)
C170.068 (2)0.047 (2)0.084 (3)0.0155 (19)0.020 (2)0.010 (2)
C180.083 (3)0.073 (3)0.058 (2)0.005 (2)0.031 (2)0.011 (2)
C190.0457 (19)0.057 (2)0.0437 (19)0.0007 (18)0.0059 (15)0.0124 (17)
C200.0424 (18)0.055 (2)0.0398 (17)0.0069 (16)0.0041 (14)0.0138 (15)
C210.0453 (19)0.068 (3)0.049 (2)0.0123 (18)0.0056 (16)0.0206 (18)
C220.053 (2)0.058 (2)0.0451 (19)0.0205 (18)0.0026 (16)0.0152 (17)
C230.059 (2)0.047 (2)0.0417 (18)0.0128 (17)0.0026 (16)0.0112 (15)
C240.0469 (18)0.047 (2)0.0397 (18)0.0097 (16)0.0056 (14)0.0086 (15)
C250.0437 (18)0.051 (2)0.0442 (18)0.0128 (16)0.0042 (14)0.0111 (15)
C260.078 (3)0.083 (3)0.081 (3)0.040 (2)0.009 (2)0.021 (2)
C270.0487 (19)0.045 (2)0.055 (2)0.0066 (16)0.0099 (16)0.0072 (16)
C280.049 (2)0.074 (3)0.086 (3)0.008 (2)0.001 (2)0.007 (2)
C290.072 (3)0.068 (3)0.100 (3)0.007 (2)0.038 (2)0.027 (2)
C300.062 (2)0.049 (2)0.073 (3)0.0042 (18)0.016 (2)0.0084 (19)
Geometric parameters (Å, º) top
N1—C71.270 (4)C16—H16A0.9600
N1—C11.414 (4)C16—H16B0.9600
N2—C191.280 (5)C16—H16C0.9600
N2—C61.411 (4)C17—H17A0.9600
O1—C131.354 (4)C17—H17B0.9600
O1—H10.8200C17—H17C0.9600
O2—C251.351 (4)C18—H18A0.9600
O2—H20.8200C18—H18B0.9600
C1—C21.387 (5)C18—H18C0.9600
C1—C61.396 (5)C19—C201.441 (5)
C2—C31.368 (5)C19—H190.9300
C2—H2A0.9300C20—C211.395 (5)
C3—C41.370 (6)C20—C251.407 (5)
C3—H30.9300C21—C221.378 (5)
C4—C51.370 (6)C21—H210.9300
C4—H40.9300C22—C231.397 (5)
C5—C61.395 (5)C22—C261.511 (5)
C5—H50.9300C23—C241.382 (5)
C7—C81.440 (5)C23—H230.9300
C7—H70.9300C24—C251.396 (5)
C8—C131.399 (5)C24—C271.536 (5)
C8—C91.403 (5)C26—H26A0.9600
C9—C101.367 (5)C26—H26B0.9600
C9—H90.9300C26—H26C0.9600
C10—C111.401 (5)C27—C301.529 (5)
C10—C141.505 (5)C27—C281.538 (5)
C11—C121.385 (5)C27—C291.544 (6)
C11—H110.9300C28—H28A0.9600
C12—C131.407 (5)C28—H28B0.9600
C12—C151.543 (5)C28—H28C0.9600
C14—H14A0.9600C29—H29A0.9600
C14—H14B0.9600C29—H29B0.9600
C14—H14C0.9600C29—H29C0.9600
C15—C161.528 (5)C30—H30A0.9600
C15—C171.530 (5)C30—H30B0.9600
C15—C181.533 (5)C30—H30C0.9600
C7—N1—C1121.6 (3)C15—C17—H17B109.5
C19—N2—C6120.5 (3)H17A—C17—H17B109.5
C13—O1—H1109.5C15—C17—H17C109.5
C25—O2—H2109.5H17A—C17—H17C109.5
C2—C1—C6118.0 (3)H17B—C17—H17C109.5
C2—C1—N1124.4 (3)C15—C18—H18A109.5
C6—C1—N1117.6 (3)C15—C18—H18B109.5
C3—C2—C1122.1 (4)H18A—C18—H18B109.5
C3—C2—H2A118.9C15—C18—H18C109.5
C1—C2—H2A118.9H18A—C18—H18C109.5
C2—C3—C4119.7 (4)H18B—C18—H18C109.5
C2—C3—H3120.1N2—C19—C20123.7 (3)
C4—C3—H3120.1N2—C19—H19118.2
C3—C4—C5119.7 (4)C20—C19—H19118.2
C3—C4—H4120.1C21—C20—C25119.3 (3)
C5—C4—H4120.1C21—C20—C19118.8 (3)
C4—C5—C6121.2 (4)C25—C20—C19121.9 (3)
C4—C5—H5119.4C22—C21—C20121.6 (3)
C6—C5—H5119.4C22—C21—H21119.2
C5—C6—C1119.2 (3)C20—C21—H21119.2
C5—C6—N2121.4 (3)C21—C22—C23116.9 (3)
C1—C6—N2119.4 (3)C21—C22—C26122.0 (4)
N1—C7—C8124.0 (3)C23—C22—C26121.1 (3)
N1—C7—H7118.0C24—C23—C22124.6 (3)
C8—C7—H7118.0C24—C23—H23117.7
C13—C8—C9119.1 (3)C22—C23—H23117.7
C13—C8—C7121.5 (3)C23—C24—C25116.6 (3)
C9—C8—C7119.3 (3)C23—C24—C27121.7 (3)
C10—C9—C8122.1 (3)C25—C24—C27121.7 (3)
C10—C9—H9119.0O2—C25—C24119.5 (3)
C8—C9—H9119.0O2—C25—C20119.6 (3)
C9—C10—C11116.8 (3)C24—C25—C20121.0 (3)
C9—C10—C14122.4 (3)C22—C26—H26A109.5
C11—C10—C14120.8 (3)C22—C26—H26B109.5
C12—C11—C10124.6 (3)H26A—C26—H26B109.5
C12—C11—H11117.7C22—C26—H26C109.5
C10—C11—H11117.7H26A—C26—H26C109.5
C11—C12—C13116.5 (3)H26B—C26—H26C109.5
C11—C12—C15121.7 (3)C30—C27—C24112.7 (3)
C13—C12—C15121.7 (3)C30—C27—C28106.6 (3)
O1—C13—C8120.1 (3)C24—C27—C28110.9 (3)
O1—C13—C12119.0 (3)C30—C27—C29107.8 (3)
C8—C13—C12120.9 (3)C24—C27—C29108.7 (3)
C10—C14—H14A109.5C28—C27—C29110.1 (4)
C10—C14—H14B109.5C27—C28—H28A109.5
H14A—C14—H14B109.5C27—C28—H28B109.5
C10—C14—H14C109.5H28A—C28—H28B109.5
H14A—C14—H14C109.5C27—C28—H28C109.5
H14B—C14—H14C109.5H28A—C28—H28C109.5
C16—C15—C17106.0 (3)H28B—C28—H28C109.5
C16—C15—C18108.8 (3)C27—C29—H29A109.5
C17—C15—C18110.1 (3)C27—C29—H29B109.5
C16—C15—C12111.8 (3)H29A—C29—H29B109.5
C17—C15—C12110.3 (3)C27—C29—H29C109.5
C18—C15—C12109.7 (3)H29A—C29—H29C109.5
C15—C16—H16A109.5H29B—C29—H29C109.5
C15—C16—H16B109.5C27—C30—H30A109.5
H16A—C16—H16B109.5C27—C30—H30B109.5
C15—C16—H16C109.5H30A—C30—H30B109.5
H16A—C16—H16C109.5C27—C30—H30C109.5
H16B—C16—H16C109.5H30A—C30—H30C109.5
C15—C17—H17A109.5H30B—C30—H30C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.605 (4)145
O2—H2···N20.821.872.609 (4)149

Experimental details

Crystal data
Chemical formulaC30H36N2O2
Mr456.61
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.578 (7), 11.394 (7), 12.217 (7)
α, β, γ (°)72.195 (6), 73.525 (6), 72.975 (6)
V3)1309.8 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.28 × 0.22 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.980, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4593, 4593, 2894
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.271, 1.13
No. of reflections4593
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.605 (4)144.7
O2—H2···N20.821.872.609 (4)149.4
 

Acknowledgements

This work was supported by the Foundation of Shandong Educational Committee (No. J10LB63) and the Key Project of Science and Technology of JNMC.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashimoto, T. & Maruoka, K. (2007). Chem. Rev. 107, 5656–5682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S., Bharti, N. & Mohapatra, P. P. (2009). Chem. Rev. 109, 1900–1947.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, W., Yao, C. & Huang, W. (2010). Chin. J. Inorg. Chem. pp. 867–874.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds