supplementary materials


lh5385 scheme

Acta Cryst. (2012). E68, o13    [ doi:10.1107/S1600536811051300 ]

N-(2,3,4-Trifluorophenyl)morpholine-4-carboxamide

L. Jie, P. Shuchen, H. Li and W. Yong

Abstract top

In title molecule, C11H11F3N2O2, the central -N-C(=O)-N- unit is essentially planar [maximum deviation = 0.013 (2) Å] and forms a dihedral angle of 57.33 (9)° with the benzene ring. The morpholine ring is in a chair conformation. In the crystal, molecules are linked into chains along [001] by N-H...O hydrogen bonds.

Comment top

The title compound (I) was made as part of our work on urea derivatives. Urea derivatives have been reported in the literature as antibacterial and antifungal agents (Zheng et al., 2010). The crystal structure of (I) is reported herein here.

The molecular structure of the title compound is shown in Fig. 1. The central -N—C(O)—N- unit is essentially planar (the maximun deviation from atoms N2/C7/O2/O1 is 0.013Å for C7) and forms a dihedral angle of 57.33 (9)° with the benzene ring. The morpholine ring is in a chair conformation. In the crystal, molecules are linked into chains along [001] by N—H···O hydrogen bonds (Fig. 2).

Related literature top

For background to urea derivatives as antibacterial and antifungal agents, see: Zheng et al. (2010).

Experimental top

To a solution of triphosgene (350 mg, 1.19 mmol) and triethylamine (680 mg, 6.80 mmol) in anhydrous acetonitrile (5 ml) at ice bath, a solution of 2,3,4-trifluoroaniline (500 mg, 3.40 mmol) and triethylamine (680 mg, 6.80 mmol) in anhydrous acetonitrile (5 ml) was added dropwise. The mixture was stirred for 1 h. Then, a solition of morpholine (300 mg,3.40 mmol) and triethylamine (680 mg, 6.80 mmol) in anhydrous acetonitrile (5 ml) was added dropwise. The reaction mixture was then removed from the cooling bath and stirred at room temperature overnight. On completion of the reaction, the mixture was poured into water. The aqueous layer was extracted with ethyl acetate and the organic layer was separated. The organic layers were washed with brine and dried over sodium sulfate, filtered, and concentrated in vacuo. The purification of the residue by silica gel column chromatography eluting with EtOAc-petroleum ether (1:8) yielded the white solid 670 mg (yield 76.2%) of N-(2,3,4-trifluorophenyl)morpholine-4-carboxamide. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation in ethyl acetate at room temperature.

Refinement top

H atoms bonded to C atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding-model approximation, with Uiso(H) = 1.2Ueq(C). The H atom bonded to N was refined independently with an isotropic displacement parameter.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
N-(2,3,4-Trifluorophenyl)morpholine-4-carboxamide top
Crystal data top
C11H11F3N2O2F(000) = 536
Mr = 260.22Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 7.8515 (4) ÅCell parameters from 1772 reflections
b = 17.8264 (6) Åθ = 3.0–29.1°
c = 8.6872 (4) ŵ = 0.14 mm1
β = 109.790 (5)°T = 293 K
V = 1144.09 (8) Å3Block, colorless
Z = 40.40 × 0.35 × 0.30 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
2009 independent reflections
Radiation source: Enhance (Mo) X-ray Source1587 reflections with I > 2σ(I)
graphiteRint = 0.016
Detector resolution: 16.0874 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 79
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1321
Tmin = 0.994, Tmax = 1.000l = 107
4250 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.044P)2 + 0.1807P]
where P = (Fo2 + 2Fc2)/3
2009 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H11F3N2O2V = 1144.09 (8) Å3
Mr = 260.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8515 (4) ŵ = 0.14 mm1
b = 17.8264 (6) ÅT = 293 K
c = 8.6872 (4) Å0.40 × 0.35 × 0.30 mm
β = 109.790 (5)°
Data collection top
Agilent Xcalibur Eos
diffractometer
2009 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1587 reflections with I > 2σ(I)
Tmin = 0.994, Tmax = 1.000Rint = 0.016
4250 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103Δρmax = 0.15 e Å3
S = 1.07Δρmin = 0.23 e Å3
2009 reflectionsAbsolute structure: ?
167 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.88764 (17)0.67437 (6)0.52547 (15)0.0574 (4)
F21.12312 (17)0.76456 (7)0.45200 (16)0.0681 (4)
F31.11974 (18)0.91342 (7)0.50200 (18)0.0764 (4)
O10.2304 (2)0.51651 (8)0.66738 (18)0.0617 (4)
O20.50780 (18)0.68346 (7)0.37155 (14)0.0427 (4)
N10.6148 (2)0.73140 (8)0.63043 (18)0.0384 (4)
N20.4106 (2)0.63276 (8)0.56564 (16)0.0370 (4)
C10.8741 (3)0.74877 (10)0.5421 (2)0.0380 (4)
C20.9976 (3)0.79446 (11)0.5078 (2)0.0434 (5)
C30.9947 (3)0.87006 (11)0.5337 (2)0.0469 (5)
C40.8722 (3)0.90070 (11)0.5949 (2)0.0471 (5)
H40.87390.95190.61590.057*
C50.7451 (3)0.85485 (10)0.6255 (2)0.0397 (5)
H50.66040.87570.66620.048*
C60.7420 (2)0.77841 (9)0.59651 (19)0.0331 (4)
C70.5081 (2)0.68272 (9)0.5135 (2)0.0328 (4)
C80.2658 (3)0.59059 (10)0.4469 (2)0.0422 (5)
H8A0.29090.58650.34520.051*
H8B0.15230.61730.42440.051*
C90.2489 (3)0.51341 (11)0.5100 (3)0.0546 (6)
H9A0.14420.48850.43420.065*
H9B0.35530.48420.51650.065*
C100.3837 (3)0.55182 (12)0.7792 (2)0.0587 (6)
H10A0.49160.52400.78410.070*
H10B0.37350.55120.88740.070*
C110.4023 (3)0.63175 (11)0.7304 (2)0.0484 (5)
H11A0.29960.66100.73400.058*
H11B0.51150.65380.80630.058*
H10.576 (3)0.7459 (10)0.705 (2)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0633 (8)0.0337 (6)0.0872 (9)0.0021 (5)0.0412 (7)0.0068 (6)
F20.0613 (8)0.0643 (8)0.1001 (10)0.0016 (6)0.0552 (8)0.0071 (7)
F30.0789 (10)0.0583 (8)0.1138 (11)0.0191 (7)0.0613 (9)0.0059 (7)
O10.0655 (10)0.0587 (10)0.0722 (10)0.0197 (8)0.0380 (9)0.0057 (8)
O20.0571 (9)0.0439 (8)0.0345 (7)0.0081 (6)0.0253 (6)0.0018 (5)
N10.0493 (10)0.0379 (9)0.0361 (8)0.0088 (7)0.0252 (8)0.0071 (7)
N20.0437 (9)0.0384 (8)0.0333 (8)0.0090 (7)0.0188 (7)0.0005 (6)
C10.0448 (11)0.0291 (9)0.0438 (10)0.0012 (8)0.0199 (9)0.0017 (8)
C20.0428 (11)0.0460 (12)0.0497 (11)0.0019 (9)0.0266 (9)0.0013 (9)
C30.0494 (12)0.0427 (11)0.0549 (12)0.0112 (10)0.0259 (10)0.0050 (9)
C40.0572 (13)0.0308 (10)0.0576 (12)0.0045 (9)0.0252 (11)0.0012 (9)
C50.0449 (11)0.0349 (10)0.0435 (10)0.0010 (9)0.0206 (9)0.0045 (8)
C60.0398 (10)0.0326 (9)0.0294 (8)0.0031 (8)0.0150 (8)0.0008 (7)
C70.0379 (10)0.0300 (9)0.0338 (9)0.0033 (8)0.0165 (8)0.0014 (7)
C80.0408 (11)0.0433 (11)0.0449 (11)0.0065 (9)0.0177 (9)0.0050 (9)
C90.0563 (14)0.0431 (12)0.0725 (14)0.0106 (10)0.0326 (12)0.0082 (10)
C100.0637 (15)0.0638 (14)0.0549 (13)0.0065 (12)0.0283 (12)0.0179 (11)
C110.0588 (13)0.0536 (12)0.0389 (10)0.0124 (10)0.0247 (9)0.0023 (9)
Geometric parameters (Å, °) top
F1—C11.342 (2)C3—C41.361 (3)
F2—C21.347 (2)C4—H40.9300
F3—C31.349 (2)C4—C51.383 (3)
O1—C91.424 (2)C5—H50.9300
O1—C101.413 (3)C5—C61.384 (2)
O2—C71.232 (2)C8—H8A0.9700
N1—C61.409 (2)C8—H8B0.9700
N1—C71.383 (2)C8—C91.504 (3)
N1—H10.843 (18)C9—H9A0.9700
N2—C71.349 (2)C9—H9B0.9700
N2—C81.459 (2)C10—H10A0.9700
N2—C111.455 (2)C10—H10B0.9700
C1—C21.374 (3)C10—C111.508 (3)
C1—C61.382 (2)C11—H11A0.9700
C2—C31.368 (3)C11—H11B0.9700
C10—O1—C9109.68 (15)O2—C7—N2122.31 (16)
C6—N1—H1116.2 (13)N2—C7—N1116.05 (15)
C7—N1—C6121.05 (14)N2—C8—H8A109.5
C7—N1—H1118.2 (13)N2—C8—H8B109.5
C7—N2—C8119.83 (14)N2—C8—C9110.94 (15)
C7—N2—C11123.95 (15)H8A—C8—H8B108.0
C11—N2—C8113.93 (15)C9—C8—H8A109.5
F1—C1—C2118.37 (17)C9—C8—H8B109.5
F1—C1—C6120.70 (16)O1—C9—C8111.42 (17)
C2—C1—C6120.91 (17)O1—C9—H9A109.3
F2—C2—C1119.96 (17)O1—C9—H9B109.3
F2—C2—C3120.24 (18)C8—C9—H9A109.3
C3—C2—C1119.78 (18)C8—C9—H9B109.3
F3—C3—C2118.52 (18)H9A—C9—H9B108.0
F3—C3—C4120.61 (18)O1—C10—H10A109.3
C4—C3—C2120.83 (18)O1—C10—H10B109.3
C3—C4—H4120.4O1—C10—C11111.65 (17)
C3—C4—C5119.28 (18)H10A—C10—H10B108.0
C5—C4—H4120.4C11—C10—H10A109.3
C4—C5—H5119.5C11—C10—H10B109.3
C4—C5—C6121.08 (18)N2—C11—C10109.20 (16)
C6—C5—H5119.5N2—C11—H11A109.8
C1—C6—N1120.74 (15)N2—C11—H11B109.8
C1—C6—C5117.99 (17)C10—C11—H11A109.8
C5—C6—N1121.17 (16)C10—C11—H11B109.8
O2—C7—N1121.59 (16)H11A—C11—H11B108.3
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.843 (18)2.120 (19)2.9306 (19)161.2 (17)
Symmetry codes: (i) x, −y+3/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.843 (18)2.120 (19)2.9306 (19)161.2 (17)
Symmetry codes: (i) x, −y+3/2, z+1/2.
Acknowledgements top

The authors thank the NSFC(81102324) for financial support and Professor Zhihua Mao (Sichuan University) for the X-ray measurements

references
References top

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Zheng, Q. Z., Cheng, H. K., Zhang, X. M., Liu, K., Jiao, Q. C. & Zhu, H. L. (2010). Eur. J. Med. Chem. 45, 3207–3212.