organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o50-o51

Cyclo­linopeptide B methanol tris­­olvate

aSaskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9, bCanadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0X4, cCollege of Agriculture & Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8, and dCollege of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9
*Correspondence e-mail: gabriele.schatte@usask.ca, r.sammynaiken@usask.ca

(Received 22 November 2011; accepted 29 November 2011; online 7 December 2011)

The title compound, C56H83N9O9S·3CH3OH, is a methanol tris­olvate of the cyclo­linopeptide cyclo(Met1—Leu2—Ile3—Pro4—Pro5—Phe6—Phe7—Val8—Ile9) (henceforth referred to as CLP-B), which was isolated from flaxseed oil. All the amino acid residues are in an L-configuration based on the CORN rule. The cyclic nona­peptide exhibits eight trans peptide bonds and one cis peptide bond observed between the two proline residues. The conformation is stabilized by an α-turn and two consecutive β-turns each containing a N—H⋯O hydrogen bond between the carbonyl group O atom of the first residue and the amide group H atom of the fourth (α-turn) or the third residue (β-turns), repectively. In the crystal, the components of the structure are linked by N—H⋯O and O—H⋯O hydrogen bonds into chains parallel to the a axis.

Related literature

For the isolation of cyclo­linopeptides A to B, B to E, F to I and characterization by multi-dimensional NMR spectroscopy, see: Matsumoto et al. (2002[Matsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2002). Tetrahedron, 58, 5135-5140.]), Morita et al. (1999[Morita, H., Shishido, A., Matsumoto, T., Itokawa, H. & Takeya, K. (1999). Tetrahedron, 55, 967-976.]) and Matsumoto et al. (2001[Matsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2001). Phytochemistry, 57, 251-260.]), respectively. For the isolation of the related cyclo­linopeptide A and its structure determination by single X-ray diffraction in the presence of different solvates, see: Di Blasio et al. (1987[Di Blasio, B., Benedetti, E., Pavone, C. & Goodman, M. (1987). Biopolymers, 26, 2099-2102.], 1989[Di Blasio, B., Benedetti, E., Pavone, C. & Temussi, P. A. (1989). J. Am. Chem. Soc. 111, 9089-9092.]); Matsumoto et al. (2002[Matsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2002). Tetrahedron, 58, 5135-5140.]); Quail et al. (2009[Quail, J. W., Shen, J., Reaney, M. J. T. & Sammynaiken, R. (2009). Acta Cryst. E65, o1913-o1914.]). For the X-ray single-crystal structure of cyclo­linopeptide K, see: Jadhav et al. (2011[Jadhav, P., Schatte, G., Labiuk, S., Burnett, P.-G., Li, B., Okinyo-Owiti, D., Reaney, M., Grochulski, P., Fodje, M. & Sammynaiken, R. (2011). Acta Cryst. E67, o2360-o2361.]). For the synthesis of cyclo­peptides, see: Rovero et al. (1991[Rovero, P., Quartara, L. & Fabbri, G. (1991). Tetrahedron Lett. 32, 2639-2642.]); Ghadiri et al. (1993[Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. (1993). Nature (London), 366, 324-327.]). For the immuno-suppressive activity of CLP-A, see: Wieczorek et al. (1991[Wieczorek, Z., Bengsston, B., Trojnar, I. & Siemion, I. Z. (1991). Peptide Res. 4, 275-283.]) and for its cytoproctective ability, see: Gaymes et al. (1997[Gaymes, T. J., Cebrat, M., Siemion, I. Z. & Kay, J. E. (1997). FEBS Lett. 418, 224-227.]). For the biomolecular inter­action with human albumin of CLP-A, see: Rempel et al. (2010[Rempel, B., Gui, B., Maley, J., Reaney, M. & Sammynaiken, R. (2010). J. Biomed. Biotechnol. 2010, 1-8.]). For details of the CORN rule, see: Cahn et al. (1966[Cahn, R. S., Ingold, C. K. & Prelog, V. (1966). Angew. Chem. Int. Ed. 5, 385-415.]). For details of the absolute structure, see: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]).

[Scheme 1]

Experimental

Crystal data
  • C56H83N9O9S·3CH4O

  • Mr = 1154.50

  • Monoclinic, P 21

  • a = 10.374 (2) Å

  • b = 19.624 (4) Å

  • c = 15.576 (4) Å

  • β = 100.0653 (13)°

  • V = 3122.1 (12) Å3

  • Z = 2

  • Synchrotron radiation

  • λ = 0.68878 Å

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.13 × 0.10 × 0.10 mm

Data collection
  • 300mm 16K Rayonix MX300 HE CCD detector with an ACCEL MD2 microdiffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.988

  • 177237 measured reflections

  • 15255 independent reflections

  • 13940 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.116

  • S = 1.12

  • 15255 reflections

  • 809 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 7080 Friedel pairs

  • Flack parameter: 0.09 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O7 0.87 (3) 2.29 (3) 3.046 (3) 145 (3)
N2—H2D⋯O8 0.87 (3) 2.11 (3) 2.923 (3) 155 (3)
N7—H7D⋯O3 0.84 (3) 2.18 (3) 2.956 (3) 153 (3)
N8—H8D⋯O2i 0.83 (3) 2.52 (3) 3.274 (3) 151 (3)
N9—H9D⋯O60 0.91 (3) 2.00 (3) 2.896 (3) 169 (3)
N6—H6D⋯O70ii 0.77 (3) 2.34 (3) 3.071 (3) 159 (3)
O60—H60⋯O1i 0.95 (4) 1.79 (4) 2.705 (3) 160 (4)
O70—H70⋯O4iii 1.01 (3) 1.91 (2) 2.861 (3) 157 (3)
O80—H80⋯O9iv 0.94 (6) 1.86 (6) 2.786 (3) 165 (5)
Symmetry codes: (i) x+1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) [-x, y+{\script{1\over 2}}, -z]; (iv) [-x, y+{\script{1\over 2}}, -z+1].

Table 2
Backbone torsion angles φ, ψ, ω and side chain torsion angle χ1 (°)in CLP-B

  φ ψ ω χ1
Met1 −83.2 (3) −3.7 (3) 174.6 (2) −56.0 (3)
Leu2 53.4 (3) 42.8 (3) −172.4 (2) −48.7 (3)
Ile3 −117.2 (3) 99.9 (2) 172.9 (2) −61.9 (3)
Pro4 −76.8 (3) 157.2 (2) −174.4 (2) 32.3 (2)
Pro5 −91.4 (3) −4.6 (3) −9.8 (3) 34.2 (2)
Phe6 −98.9 (3) −23.7 (3) −166.6 (2) −75.2 (2)
Phe7 −116.6 (2) 72.7 (3) −171.5 (2) −59.6 (3)
Val8 −63.9 (3) −43.7 (3) −162.8 (2) −66.1 (19)
Ile9 −69.8 (3) −19.9 (3) −177.1 (2) −155.2 (2)

Data collection: MXDC, Macromolecular Crystallography Data Collector (Canadian Light Source, 2007[Canadian Light Source (2007). MXDC. Canadian Light Source, Saskatoon, Saskatchewan, Canada.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Flaxseed (bionamial name: Linum usitatassimum) contains mostly triglyceride oil (omega-3 fatty acids, and alpha-linolenic acid etc.), to lesser amounts lignans and very small amounts of hydrophobic cyclolinopeptides. These cyclo octa-and nonapeptides have attracted significant interest because of their various biological activities, most importantly because of their immuno-suppressive activity (Wieczorek et al., 1991), their cytoprotective ability, their inhibitory activity toward calcium-dependent activation of T-lymphocyte cell division (Gaymes et al., 1997), and their biomolecular interaction with human albumin (Rempel et al., 2010). The structures of nine different cyclolinopeptides (CLP-A to CLP-I) have been elucidated by two-dimensional FT-NMR spectroscopy (Matsumoto et al., 2002; Morita et al., 1999; Matsumoto et al., 2001). Structure determinations of CLP-A with different co-crystallized solvent molecules have been established by single-crystal X-ray diffraction (Di Blasio et al., 1987, 1989; Matsumoto et al., 2002; Quail et al. 2009). Recently, the crystal structure of the previously unknown CLP-K has been reported (Jadhav et al., 2011). The crystal structure of cyclo(Met1—Leu2—Ile3—Pro4—Pro5—Phe6—Phe7—Val8—Ile9), CLP-B, was determined as part of our ongoing research on the biological activity of flaxseeds from different locations and strains.

All the amino acid residues in CLP-B are in the L configuration based on CORN rule. The L configuration of the amino acid residues in the CLP-B was determined previously using derivative chemistry (Morita et al., 1999). Applying the Cahn-Ingold-Prelog priority rules (Cahn et al., 1966), the configuration at the chiral α-C atom of each amino acid residue is S. The standard uncertainty u = 0.07 at the Flack parameter x = 0.09 implies an enantiopure-sufficient inversion-distinguishing power and together with |x| < 2u one can conclude that the absolute structure is correct (Flack & Bernardinelli, 2000). The cyclolinopeptide exhibits eight trans peptide bonds with values for ω ranging from 162.8 (2) to 177.1 (2)° (see Table 2) and one cis peptide bond observed between the two proline residues (ω = -9.8 (3)°) (see Table 2). The conformation of the cylic peptide is stabilized by an α-turn and two consecutive β-turns each containing a hydrogen bond between the carbonyl oxygen of the first residue and the amide hydrogen of the fourth (α-turn) or the third residue (β-turn), repectively. The 51 NH···O=C contact bond (α-turn) involves the amide group of Phe7 and carbonyl group of Ile3 with the two cis bonded proline residues Pro4 and Pro5 being part of this α-turn. The α-turn in CLP-B is identical to the one found in CLP-K (Jadhav et al., 2011). In contrast, only one β-turn was located in the crystal structure of CLP-K, which involved the amide group of Ile3 and carbonyl group of Ile9 (Jadhav et al., 2011). The first β-turn, a 41 NH···O=C contact bond, is formed between the amide group of Leu2 and the carbonyl group of Val8. The second β-turn is observed between the amide group of Met1 and the carbonyl group of Phe7. The presence of these turns leads to a very twisted conformation of CLP-B with an almost V-shaped part at Pro5 as depicted in Fig. 2. The side chains of Met1, Leu2, Ile3, Phe6, Phe7, Val8, Ile9 all adopt the gauche(+) conformation based on their χ1 torsion angles (see Table 2).

The analysis of the conformation of CLP-B in the polar solvent d6-DMSO using NMR spectroscopy showed the presence of a γ-turn, 31 NH···OC contact bond, involving the amide group of Val8 and carbonyl group of Phe6 (Matsumoto et al., 2002). In contrast, this γ-turn is not observed in the solid state structure of CLP-B. In fact, the nitrogen atom of the amide group in Val8 and the oxygen atom of carbonyl group in Phe6 are separated by 3.670 (3) Å, which exceeds by far the N···O contact distance of 3.07 Å based on the sum of the van der Waals radii for nitrogen and oxygen. The value for the 31 NH···O=C contact bond was calculated to be 1.95 Å based on distance geometry (DG) calculations in combination with NMR data (Matsumoto et al., 2002). However, in the crystal structure of CLP-B this distance is 3.06 (3) Å, which is too long for a NH···OC contact bond.

The CLP-B molecules are linked via intermolcular NH···OC contact bonds. In addition, the CLP-B units are connected via one methanol solvent molecule through hydrogen bonds involving a) one carbonyl group of one peptide and the hydrogen atom of the hydroxy group of a methanol molecule and, b) the oxygen atom of the hydroxy group of the same methanol molecule and the hydrogen atoms of the two amide groups of a symmetry related CLP-B molecule (see Table 1). These hydrogen bond interconnections are responsible for the formation of infinite one-dimensional chains parallel to the a axis. The remaining two methanol solvent molecules form only one hydrogen bond with either a carbonyl group or an amide group of a symmetry related ClP-B molecule.

Related literature top

For the isolation of cyclolinopeptides A to B, B to E, F to I and characterization by multi-dimensional NMR spectroscopy, see: Matsumoto et al. (2002), Morita et al. (1999) and Matsumoto et al. (2001), respectively. For the isolation of the related cyclolinopeptide A and its structure determination by single X-ray diffraction in the presence of different solvates, see: Di Blasio et al. (1987, 1989); Matsumoto et al. (2002); Quail et al. (2009). For the X-ray single-crystal structure of cyclolinopeptide K, see: Jadhav et al. (2011). For the synthesis of cyclopeptides, see: Rovero et al. (1991); Ghadiri et al. (1993). For the immuno-suppressive activity of CLP-A, see: Wieczorek et al. (1991) and for its cytoproctective ability, see: Gaymes et al. (1997). For the biomolecular interaction with human albumin of CLP-A, see: Rempel et al. (2010). For details of the CORN rule, see: Cahn et al. (1966). For details of the absolute structure, see: Flack & Bernardinelli (2000).

Experimental top

Crystals of CLP-B were obtained via slow cooling of a saturated solution of CLP-B in methanol. A clear solution of CLP-B (5 mg) in (100 µL) was obtained upon sonicating and heating the CLP-B/methanol solvent mixture to 323K. The solution was allowed to reach room temperature. Single small cube-like crystals of CLP-B, suitable for X-ray diffraction, were obtained within two hours.

Refinement top

A suitable single-crystal was removed from the solution, quickly coated with oil (Paratone 8277, Exxon), collected inside a mounted CryoLoopTM (diameter of the nylon fiber: 10 microns; loop diameter 0.1–0.2 mm) and then quickly transferred to the cold stream of the Oxford cryo-jet. The mounted CryoLoopTM had been attached prior to a copper wire (thickness, 0.6 mm; length: 18 mm) attached to a magnetic base using epoxy. Intensity data were collected at 100 K using the beamline 08B1–1 (CMCF-BM; Canadian Light Source) equipped with a ACCEL MD2 microdiffractometer and a 300 mm 16 K Rayonix MX300 HE CCD detector. The wavelength was set to 0.68878 Å and the distance between the detector and the crystal to 150 mm. The initial screening and data collection was performed with the Macromolecular Crystallography Data Collector (MXDC) graphical user interface. A series of data frames at 1° increments of ω were collected. The integrated intensity data were merged and corrected for absorption using SADABS (6, 1 harmonics). The final unit-cell parameters are based upon the refinement of the XYZ weighted centroids of 9745 reflections above 20 σ(I) with 4.71° < 2θ < 60.51°.

The C-bound H atoms, with the exception of the α-C-bound H atoms, were geometrically placed (C–H = 0.98–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The hydrogen atoms of the amide groups and the the α-C-bound hydrogen atoms were located in the difference Fourier map and were allowed to refine freely. The hydrogen atoms of the hydroxyl groups of the methanol solvent molecules were located in the difference Fourier map and were allowed to refine freely.

Computing details top

Data collection: MXDC, Macromolecular Crystallography Data Collector (Canadian Light Source, 2007); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure showing the labelling scheme and the inter- and intra-molecular hydrogen bonding. Hydrogen atoms have been omitted for clarity. The non-hydrogen atoms are represented by displacement ellipsoids at the 20% probability level. Symmetry transformations used to generate equivalent atoms: (i) x + 1, y, z; (ii) -x, y - 1/2, -z; (v) -x, y - 1/2, -z + 1; (vi) x - 1, y, z + 1.
[Figure 2] Fig. 2. Secondary structure of CLP-B showing the α-turn and the two β-turns. The cartoon representation is traced along the backbone of CLP-B. Hydrogen atoms have been omitted for clarity.
Cyclolinopeptide B methanol trisolvate top
Crystal data top
C56H83N9O9S·3CH4OF(000) = 1248
Mr = 1154.50Dx = 1.228 Mg m3
Monoclinic, P21Synchrotron radiation, λ = 0.68878 Å
Hall symbol: P 2ybCell parameters from 9745 reflections
a = 10.374 (2) Åθ = 2.4–30.3°
b = 19.624 (4) ŵ = 0.12 mm1
c = 15.576 (4) ÅT = 100 K
β = 100.0653 (13)°Plate, colourless
V = 3122.1 (12) Å30.13 × 0.10 × 0.10 mm
Z = 2
Data collection top
300mm 16K Rayonix MX300 HE CCD detector with an ACCEL MD2 microdiffractometer15255 independent reflections
Radiation source: Beamline 08B1-1 at the CLS13940 reflections with I > 2σ(I)
Double crystal Si(111) monochromatorRint = 0.055
Detector resolution: 13.8 pixels mm-1θmax = 27.3°, θmin = 1.3°
CCD rotation images, ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2626
Tmin = 0.985, Tmax = 0.988l = 2020
177237 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.P)2 + 3.9515P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.64 e Å3
15255 reflectionsΔρmin = 0.34 e Å3
809 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0195 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 7080 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (7)
Crystal data top
C56H83N9O9S·3CH4OV = 3122.1 (12) Å3
Mr = 1154.50Z = 2
Monoclinic, P21Synchrotron radiation, λ = 0.68878 Å
a = 10.374 (2) ŵ = 0.12 mm1
b = 19.624 (4) ÅT = 100 K
c = 15.576 (4) Å0.13 × 0.10 × 0.10 mm
β = 100.0653 (13)°
Data collection top
300mm 16K Rayonix MX300 HE CCD detector with an ACCEL MD2 microdiffractometer15255 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
13940 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.988Rint = 0.055
177237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116Δρmax = 0.64 e Å3
S = 1.12Δρmin = 0.34 e Å3
15255 reflectionsAbsolute structure: Flack (1983), 7080 Friedel pairs
809 parametersAbsolute structure parameter: 0.09 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13874 (7)0.29912 (3)0.57965 (4)0.02844 (14)
O10.19694 (17)0.11300 (9)0.52610 (11)0.0239 (4)
O20.34076 (16)0.02660 (10)0.41387 (11)0.0235 (4)
O30.01559 (18)0.02475 (11)0.22118 (13)0.0326 (4)
O40.19208 (17)0.09933 (10)0.03103 (11)0.0243 (4)
O50.32126 (18)0.18176 (9)0.16363 (13)0.0292 (4)
O60.47224 (17)0.01870 (11)0.21109 (13)0.0317 (4)
O70.15135 (17)0.04399 (9)0.40798 (11)0.0232 (4)
O80.19776 (16)0.04762 (9)0.59423 (10)0.0205 (3)
O90.15096 (17)0.10619 (10)0.72756 (11)0.0253 (4)
N10.15582 (19)0.11428 (10)0.58285 (12)0.0174 (4)
H1D0.192 (3)0.0954 (17)0.542 (2)0.033 (8)*
N20.0484 (2)0.02701 (10)0.54770 (12)0.0177 (4)
H2D0.034 (3)0.0177 (16)0.564 (2)0.026 (8)*
N30.1505 (2)0.00636 (10)0.37164 (13)0.0193 (4)
H3D0.061 (3)0.0128 (16)0.389 (2)0.027 (8)*
N40.18619 (19)0.09694 (11)0.20855 (12)0.0194 (4)
N50.00959 (19)0.16296 (10)0.04200 (12)0.0189 (4)
N60.2166 (2)0.08956 (10)0.09619 (13)0.0173 (4)
H6D0.152 (3)0.0764 (13)0.0689 (17)0.009 (6)*
N70.2594 (2)0.01660 (10)0.22498 (12)0.0180 (4)
H7D0.183 (3)0.0028 (14)0.2062 (18)0.015 (7)*
N80.3453 (2)0.00933 (11)0.41386 (13)0.0200 (4)
H8D0.415 (3)0.0093 (16)0.394 (2)0.029 (8)*
N90.36326 (19)0.02755 (10)0.59635 (12)0.0168 (4)
H9D0.422 (3)0.0447 (17)0.565 (2)0.032 (8)*
C10.0276 (2)0.14528 (12)0.56048 (15)0.0187 (4)
H10.012 (3)0.1732 (15)0.6139 (19)0.022*
C20.0190 (2)0.18937 (12)0.47889 (15)0.0225 (5)
H2A0.02620.15950.42880.027*
H2B0.06830.21120.46700.027*
C30.1225 (3)0.24430 (13)0.48490 (17)0.0263 (5)
H3A0.10270.27310.43210.032*
H3B0.20810.22210.48420.032*
C40.0273 (3)0.32857 (14)0.5739 (2)0.0333 (6)
H4A0.06070.34550.51500.050*
H4B0.02910.36540.61610.050*
H4C0.08220.29080.58740.050*
C50.0825 (2)0.09278 (12)0.54444 (13)0.0178 (4)
C60.1436 (2)0.02723 (12)0.52313 (14)0.0177 (4)
H60.093 (3)0.0690 (15)0.5196 (18)0.021*
C70.2316 (2)0.04099 (13)0.59055 (15)0.0219 (5)
H7A0.28210.08320.57370.026*
H7B0.29510.00310.58840.026*
C80.1594 (2)0.04872 (13)0.68467 (15)0.0237 (5)
H80.11160.00530.70230.028*
C90.2599 (3)0.05989 (16)0.74422 (17)0.0317 (6)
H9A0.30780.10230.72790.048*
H9B0.32150.02160.73810.048*
H9C0.21490.06290.80490.048*
C100.0613 (3)0.10630 (16)0.69568 (17)0.0326 (6)
H10A0.01740.10850.75670.049*
H10B0.00380.09830.65820.049*
H10C0.10660.14940.67930.049*
C110.2228 (2)0.01490 (12)0.43115 (15)0.0190 (4)
C120.2052 (2)0.01339 (13)0.27855 (14)0.0191 (4)
H120.297 (3)0.0005 (15)0.2686 (19)0.023*
C130.1938 (2)0.08612 (13)0.24462 (15)0.0225 (5)
H130.09950.09980.25650.027*
C140.2420 (3)0.08767 (16)0.14596 (17)0.0334 (6)
H14A0.33370.07310.13320.050*
H14B0.18850.05680.11730.050*
H14C0.23460.13410.12430.050*
C150.2712 (3)0.13593 (13)0.29222 (16)0.0243 (5)
H15A0.36590.12670.27420.029*
H15B0.24850.12760.35580.029*
C160.2449 (3)0.21045 (15)0.27420 (19)0.0339 (6)
H16A0.15070.21950.28950.051*
H16B0.29220.23960.30930.051*
H16C0.27470.22020.21220.051*
C170.1293 (2)0.03756 (12)0.23224 (14)0.0200 (4)
C180.3208 (2)0.11839 (13)0.21534 (16)0.0230 (5)
H18A0.38570.08370.19000.028*
H18B0.32930.12660.27680.028*
C190.3384 (2)0.18421 (13)0.16275 (17)0.0242 (5)
H19A0.37240.17500.10040.029*
H19B0.39900.21570.18550.029*
C200.2001 (2)0.21346 (12)0.17535 (16)0.0236 (5)
H20A0.19070.24610.12840.028*
H20B0.17720.23670.23240.028*
C210.1144 (2)0.15029 (12)0.17123 (15)0.0195 (4)
H210.025 (3)0.1559 (16)0.206 (2)0.028 (8)*
C220.1074 (2)0.13400 (12)0.07623 (14)0.0183 (4)
C230.0172 (3)0.16641 (13)0.05321 (15)0.0233 (5)
H23A0.00890.12050.07800.028*
H23B0.10100.18690.08160.028*
C240.0990 (3)0.21170 (13)0.06517 (16)0.0263 (5)
H24A0.07430.24310.11510.032*
H24B0.17420.18360.07530.032*
C250.1328 (3)0.25147 (13)0.02031 (16)0.0247 (5)
H25A0.22620.26490.03160.030*
H25B0.07790.29280.01920.030*
C260.1030 (2)0.20053 (12)0.08920 (15)0.0181 (4)
H260.079 (3)0.2264 (14)0.1405 (19)0.022*
C270.2231 (2)0.15589 (12)0.12020 (14)0.0189 (4)
C280.3345 (2)0.04812 (12)0.10676 (14)0.0174 (4)
H280.413 (3)0.0782 (15)0.1174 (18)0.021*
C290.3369 (2)0.00383 (12)0.02555 (16)0.0222 (5)
H29A0.25020.01780.00750.027*
H29B0.40270.03280.04010.027*
C300.3697 (2)0.04568 (12)0.04882 (14)0.0201 (4)
C310.4968 (2)0.07005 (13)0.04352 (15)0.0233 (5)
H310.56120.05930.00580.028*
C320.5302 (3)0.11006 (15)0.10995 (16)0.0282 (5)
H320.61710.12680.10590.034*
C330.4363 (3)0.12551 (15)0.18226 (16)0.0286 (6)
H330.45860.15340.22730.034*
C340.3104 (3)0.10055 (14)0.18905 (16)0.0278 (5)
H340.24670.11060.23910.033*
C350.2770 (3)0.06054 (13)0.12231 (16)0.0242 (5)
H350.19050.04330.12700.029*
C360.3604 (2)0.00238 (12)0.18722 (15)0.0208 (5)
C370.2786 (2)0.06758 (12)0.29396 (14)0.0196 (4)
H370.365 (3)0.0789 (15)0.3052 (19)0.024*
C380.1985 (3)0.13154 (13)0.26756 (16)0.0239 (5)
H38A0.10410.12010.25550.029*
H38B0.21350.16520.31560.029*
C390.2388 (2)0.16159 (13)0.18688 (17)0.0232 (5)
C400.1646 (3)0.15059 (13)0.10492 (16)0.0251 (5)
H400.08230.12830.09980.030*
C410.2097 (3)0.17198 (14)0.02960 (17)0.0298 (6)
H410.15800.16450.02630.036*
C420.3299 (3)0.20408 (15)0.03706 (18)0.0318 (6)
H420.36160.21800.01380.038*
C430.4036 (3)0.21588 (16)0.1182 (2)0.0358 (7)
H430.48600.23800.12330.043*
C440.3574 (3)0.19550 (14)0.19253 (18)0.0310 (6)
H440.40770.20490.24830.037*
C450.2524 (2)0.03411 (12)0.37730 (14)0.0177 (4)
C460.3195 (2)0.05871 (12)0.47820 (14)0.0179 (4)
H460.234 (3)0.0841 (15)0.4547 (18)0.021*
C470.4341 (2)0.10966 (13)0.49627 (15)0.0229 (5)
H470.51730.08310.51050.027*
C480.4401 (3)0.15251 (14)0.41486 (18)0.0305 (6)
H48A0.51680.18250.42590.046*
H48B0.44690.12230.36570.046*
H48C0.36050.18010.40080.046*
C490.4231 (3)0.15494 (15)0.57389 (18)0.0324 (6)
H49A0.34280.18210.56090.049*
H49B0.42040.12650.62530.049*
H49C0.49900.18540.58550.049*
C500.2898 (2)0.02502 (11)0.56122 (14)0.0168 (4)
C510.3364 (2)0.05662 (12)0.67829 (14)0.0182 (4)
H510.329 (3)0.0159 (15)0.7161 (19)0.022*
C520.4489 (2)0.10234 (12)0.72486 (15)0.0211 (5)
H520.53330.08040.71760.025*
C530.4466 (2)0.17364 (13)0.68547 (17)0.0249 (5)
H53A0.36680.19740.69430.037*
H53B0.44800.17010.62290.037*
H53C0.52340.19920.71390.037*
C540.4448 (3)0.10467 (16)0.82280 (16)0.0309 (6)
H54A0.36670.13090.83170.037*
H54B0.43470.05760.84360.037*
C550.5659 (3)0.13651 (16)0.87815 (18)0.0332 (6)
H55A0.64420.11170.86870.050*
H55B0.55830.13400.93990.050*
H55C0.57300.18430.86130.050*
C560.2060 (2)0.09437 (12)0.66483 (15)0.0187 (4)
O600.5397 (2)0.09999 (10)0.50357 (16)0.0394 (5)
H600.632 (4)0.094 (2)0.512 (3)0.059*
C610.5126 (3)0.16301 (17)0.46285 (19)0.0379 (7)
H61A0.53910.16220.40550.057*
H61B0.56120.19880.49870.057*
H61C0.41850.17230.45580.045*
O700.0046 (2)0.50065 (13)0.0002 (2)0.0543 (7)
H700.087 (4)0.4745 (17)0.003 (3)0.081*
C710.0460 (4)0.54449 (19)0.0714 (3)0.0583 (11)
H71A0.09150.51790.12080.087*
H71B0.03040.56690.08800.087*
H71C0.10550.57900.05500.087*
O800.0463 (2)0.68755 (16)0.2264 (2)0.0658 (9)
H800.009 (5)0.654 (3)0.244 (4)0.099*
C810.1734 (3)0.66712 (18)0.2587 (2)0.0409 (7)
H81A0.23470.69490.23250.061*
H81B0.18400.61910.24430.061*
H81C0.19130.67290.32220.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0277 (3)0.0223 (3)0.0333 (3)0.0027 (2)0.0004 (3)0.0035 (3)
O10.0205 (8)0.0256 (9)0.0256 (9)0.0034 (7)0.0036 (7)0.0041 (7)
O20.0197 (8)0.0341 (10)0.0175 (8)0.0050 (7)0.0051 (6)0.0004 (7)
O30.0229 (9)0.0368 (11)0.0421 (11)0.0074 (8)0.0166 (8)0.0158 (9)
O40.0216 (8)0.0319 (9)0.0194 (8)0.0074 (7)0.0037 (6)0.0035 (7)
O50.0253 (9)0.0283 (10)0.0321 (10)0.0034 (7)0.0001 (7)0.0098 (8)
O60.0176 (9)0.0407 (11)0.0368 (10)0.0023 (8)0.0043 (7)0.0172 (9)
O70.0219 (8)0.0311 (9)0.0176 (8)0.0023 (7)0.0066 (6)0.0019 (7)
O80.0209 (8)0.0239 (8)0.0184 (8)0.0038 (7)0.0083 (6)0.0009 (6)
O90.0256 (9)0.0366 (10)0.0149 (7)0.0056 (8)0.0068 (6)0.0020 (7)
N10.0193 (9)0.0193 (9)0.0141 (8)0.0007 (7)0.0048 (7)0.0003 (7)
N20.0174 (9)0.0188 (9)0.0168 (9)0.0023 (7)0.0028 (7)0.0020 (7)
N30.0184 (9)0.0237 (10)0.0170 (9)0.0015 (8)0.0067 (7)0.0020 (7)
N40.0193 (9)0.0242 (10)0.0160 (9)0.0013 (8)0.0064 (7)0.0058 (7)
N50.0224 (10)0.0206 (9)0.0145 (9)0.0016 (8)0.0055 (7)0.0016 (7)
N60.0164 (9)0.0185 (9)0.0169 (9)0.0000 (8)0.0028 (7)0.0000 (7)
N70.0171 (9)0.0236 (10)0.0143 (8)0.0009 (8)0.0061 (7)0.0023 (7)
N80.0212 (10)0.0242 (10)0.0166 (9)0.0004 (8)0.0089 (8)0.0015 (8)
N90.0180 (9)0.0184 (9)0.0152 (8)0.0005 (7)0.0062 (7)0.0019 (7)
C10.0185 (11)0.0211 (11)0.0165 (10)0.0016 (9)0.0032 (8)0.0003 (8)
C20.0277 (12)0.0236 (12)0.0168 (11)0.0046 (10)0.0055 (9)0.0009 (9)
C30.0305 (13)0.0238 (12)0.0262 (12)0.0017 (10)0.0092 (10)0.0077 (10)
C40.0383 (15)0.0255 (13)0.0374 (15)0.0039 (11)0.0105 (12)0.0028 (11)
C50.0207 (11)0.0233 (11)0.0105 (9)0.0006 (9)0.0056 (8)0.0025 (8)
C60.0188 (10)0.0190 (10)0.0161 (10)0.0023 (9)0.0050 (8)0.0019 (8)
C70.0192 (11)0.0294 (12)0.0178 (10)0.0040 (9)0.0048 (8)0.0017 (9)
C80.0262 (12)0.0284 (12)0.0177 (11)0.0073 (10)0.0072 (9)0.0008 (9)
C90.0320 (14)0.0442 (16)0.0211 (12)0.0025 (12)0.0110 (10)0.0046 (11)
C100.0319 (14)0.0482 (17)0.0183 (11)0.0027 (12)0.0062 (10)0.0036 (11)
C110.0201 (11)0.0186 (10)0.0187 (10)0.0031 (9)0.0046 (8)0.0037 (8)
C120.0172 (10)0.0275 (12)0.0131 (9)0.0037 (9)0.0038 (8)0.0056 (8)
C130.0242 (12)0.0267 (12)0.0179 (11)0.0007 (9)0.0072 (9)0.0015 (9)
C140.0447 (16)0.0378 (15)0.0193 (12)0.0013 (13)0.0096 (11)0.0020 (11)
C150.0285 (13)0.0259 (12)0.0196 (11)0.0005 (10)0.0071 (9)0.0008 (9)
C160.0473 (17)0.0262 (13)0.0290 (13)0.0029 (12)0.0090 (12)0.0014 (11)
C170.0196 (11)0.0252 (12)0.0158 (10)0.0043 (9)0.0046 (8)0.0026 (9)
C180.0197 (11)0.0239 (12)0.0276 (12)0.0016 (9)0.0099 (9)0.0032 (10)
C190.0251 (12)0.0220 (12)0.0267 (12)0.0034 (9)0.0078 (10)0.0030 (9)
C200.0295 (13)0.0225 (12)0.0206 (11)0.0008 (10)0.0096 (9)0.0018 (9)
C210.0218 (11)0.0222 (11)0.0156 (10)0.0045 (9)0.0061 (8)0.0006 (8)
C220.0203 (11)0.0188 (10)0.0163 (10)0.0022 (8)0.0045 (8)0.0026 (8)
C230.0298 (12)0.0292 (13)0.0115 (10)0.0013 (10)0.0052 (9)0.0017 (9)
C240.0342 (13)0.0271 (13)0.0205 (11)0.0021 (10)0.0131 (10)0.0044 (9)
C250.0294 (13)0.0204 (11)0.0260 (12)0.0011 (10)0.0091 (10)0.0019 (9)
C260.0191 (10)0.0164 (10)0.0204 (10)0.0049 (9)0.0079 (8)0.0014 (9)
C270.0204 (11)0.0213 (11)0.0160 (10)0.0035 (9)0.0063 (8)0.0004 (8)
C280.0176 (10)0.0207 (11)0.0147 (9)0.0002 (9)0.0051 (8)0.0010 (8)
C290.0252 (12)0.0210 (11)0.0218 (11)0.0013 (9)0.0079 (9)0.0027 (9)
C300.0261 (12)0.0211 (11)0.0140 (10)0.0020 (9)0.0061 (8)0.0035 (8)
C310.0214 (11)0.0332 (13)0.0153 (10)0.0021 (10)0.0036 (9)0.0033 (9)
C320.0264 (12)0.0397 (15)0.0203 (12)0.0038 (11)0.0091 (10)0.0010 (11)
C330.0342 (14)0.0384 (15)0.0154 (11)0.0019 (12)0.0098 (10)0.0003 (10)
C340.0318 (13)0.0353 (14)0.0163 (11)0.0048 (11)0.0045 (9)0.0043 (10)
C350.0234 (12)0.0280 (13)0.0215 (11)0.0031 (10)0.0045 (9)0.0073 (9)
C360.0220 (11)0.0210 (11)0.0192 (11)0.0032 (9)0.0029 (9)0.0008 (9)
C370.0226 (11)0.0224 (11)0.0141 (10)0.0032 (9)0.0042 (8)0.0008 (8)
C380.0278 (13)0.0230 (12)0.0229 (12)0.0023 (10)0.0104 (10)0.0006 (9)
C390.0242 (12)0.0204 (11)0.0257 (12)0.0050 (9)0.0064 (9)0.0044 (9)
C400.0252 (12)0.0253 (12)0.0244 (12)0.0015 (10)0.0029 (10)0.0058 (10)
C410.0397 (15)0.0296 (14)0.0196 (12)0.0008 (12)0.0036 (10)0.0082 (10)
C420.0322 (14)0.0363 (14)0.0285 (13)0.0037 (12)0.0097 (11)0.0122 (11)
C430.0285 (14)0.0385 (16)0.0395 (16)0.0061 (12)0.0034 (12)0.0172 (13)
C440.0315 (14)0.0308 (14)0.0289 (13)0.0062 (11)0.0003 (11)0.0066 (11)
C450.0210 (11)0.0173 (10)0.0158 (10)0.0018 (8)0.0057 (8)0.0045 (8)
C460.0196 (11)0.0188 (11)0.0163 (10)0.0027 (9)0.0059 (8)0.0005 (8)
C470.0254 (12)0.0237 (12)0.0208 (11)0.0027 (9)0.0074 (9)0.0001 (9)
C480.0386 (15)0.0273 (13)0.0291 (13)0.0059 (12)0.0152 (11)0.0009 (10)
C490.0435 (16)0.0294 (13)0.0265 (13)0.0134 (12)0.0124 (11)0.0073 (11)
C500.0185 (10)0.0162 (10)0.0163 (10)0.0038 (8)0.0048 (8)0.0024 (8)
C510.0207 (11)0.0189 (11)0.0147 (10)0.0007 (9)0.0027 (8)0.0009 (8)
C520.0197 (11)0.0223 (11)0.0208 (11)0.0009 (9)0.0023 (8)0.0019 (9)
C530.0241 (12)0.0243 (12)0.0255 (12)0.0062 (10)0.0023 (9)0.0000 (10)
C540.0329 (14)0.0396 (15)0.0190 (11)0.0124 (12)0.0015 (10)0.0007 (11)
C550.0300 (14)0.0441 (16)0.0233 (13)0.0046 (12)0.0011 (10)0.0050 (11)
C560.0175 (10)0.0202 (11)0.0180 (10)0.0020 (8)0.0022 (8)0.0028 (8)
O600.0289 (10)0.0249 (10)0.0703 (15)0.0027 (8)0.0254 (10)0.0009 (10)
C610.0386 (16)0.0470 (17)0.0295 (14)0.0136 (14)0.0099 (12)0.0007 (13)
O700.0355 (12)0.0381 (12)0.093 (2)0.0076 (10)0.0226 (13)0.0271 (13)
C710.057 (2)0.0386 (18)0.067 (2)0.0053 (17)0.0233 (19)0.0066 (17)
O800.0290 (12)0.079 (2)0.092 (2)0.0073 (12)0.0186 (13)0.0611 (17)
C810.0309 (15)0.055 (2)0.0384 (16)0.0066 (14)0.0109 (12)0.0220 (15)
Geometric parameters (Å, º) top
S1—C41.804 (3)C21—H211.00 (3)
S1—C31.810 (3)C23—C241.534 (3)
O1—C51.237 (3)C23—H23A0.9900
O2—C111.228 (3)C23—H23B0.9900
O3—C171.247 (3)C24—C251.530 (4)
O4—C221.231 (3)C24—H24A0.9900
O5—C271.230 (3)C24—H24B0.9900
O6—C361.227 (3)C25—C261.537 (3)
O7—C451.241 (3)C25—H25A0.9900
O8—C501.243 (3)C25—H25B0.9900
O9—C561.236 (3)C26—C271.530 (3)
N1—C561.350 (3)C26—H261.01 (3)
N1—C11.449 (3)C28—C361.527 (3)
N1—H1D0.87 (3)C28—C291.538 (3)
N2—C51.337 (3)C28—H281.00 (3)
N2—C61.457 (3)C29—C301.507 (3)
N2—H2D0.87 (3)C29—H29A0.9900
N3—C111.356 (3)C29—H29B0.9900
N3—C121.468 (3)C30—C351.391 (3)
N3—H3D0.93 (3)C30—C311.392 (3)
N4—C171.329 (3)C31—C321.390 (3)
N4—C211.463 (3)C31—H310.9500
N4—C181.480 (3)C32—C331.388 (4)
N5—C221.351 (3)C32—H320.9500
N5—C261.466 (3)C33—C341.381 (4)
N5—C231.473 (3)C33—H330.9500
N6—C271.353 (3)C34—C351.394 (4)
N6—C281.454 (3)C34—H340.9500
N6—H6D0.77 (3)C35—H350.9500
N7—C361.341 (3)C37—C451.521 (3)
N7—C371.456 (3)C37—C381.522 (3)
N7—H7D0.84 (3)C37—H370.91 (3)
N8—C451.337 (3)C38—C391.512 (3)
N8—C461.452 (3)C38—H38A0.9900
N8—H8D0.83 (3)C38—H38B0.9900
N9—C501.341 (3)C39—C441.387 (4)
N9—C511.468 (3)C39—C401.388 (4)
N9—H9D0.91 (3)C40—C411.401 (3)
C1—C51.526 (3)C40—H400.9500
C1—C21.527 (3)C41—C421.383 (4)
C1—H11.03 (3)C41—H410.9500
C2—C31.513 (4)C42—C431.378 (4)
C2—H2A0.9900C42—H420.9500
C2—H2B0.9900C43—C441.387 (4)
C3—H3A0.9900C43—H430.9500
C3—H3B0.9900C44—H440.9500
C4—H4A0.9800C46—C501.531 (3)
C4—H4B0.9800C46—C471.541 (3)
C4—H4C0.9800C46—H461.03 (3)
C6—C71.532 (3)C47—C491.521 (3)
C6—C111.541 (3)C47—C481.532 (3)
C6—H60.98 (3)C47—H471.0000
C7—C81.533 (3)C48—H48A0.9800
C7—H7A0.9900C48—H48B0.9800
C7—H7B0.9900C48—H48C0.9800
C8—C101.510 (4)C49—H49A0.9800
C8—C91.528 (3)C49—H49B0.9800
C8—H81.0000C49—H49C0.9800
C9—H9A0.9800C51—C561.524 (3)
C9—H9B0.9800C51—C521.548 (3)
C9—H9C0.9800C51—H511.00 (3)
C10—H10A0.9800C52—C531.526 (3)
C10—H10B0.9800C52—C541.534 (3)
C10—H10C0.9800C52—H521.0000
C12—C171.529 (3)C53—H53A0.9800
C12—C131.534 (3)C53—H53B0.9800
C12—H120.98 (3)C53—H53C0.9800
C13—C141.531 (3)C54—C551.528 (4)
C13—C151.536 (3)C54—H54A0.9900
C13—H131.0000C54—H54B0.9900
C14—H14A0.9800C55—H55A0.9800
C14—H14B0.9800C55—H55B0.9800
C14—H14C0.9800C55—H55C0.9800
C15—C161.523 (4)O60—C611.396 (4)
C15—H15A0.9900O60—H600.95 (4)
C15—H15B0.9900C61—H61A0.9800
C16—H16A0.9800C61—H61B0.9800
C16—H16B0.9800C61—H61C0.9800
C16—H16C0.9800O70—C711.415 (4)
C18—C191.523 (3)O70—H701.01 (3)
C18—H18A0.9900C71—H71A0.9800
C18—H18B0.9900C71—H71B0.9800
C19—C201.526 (3)C71—H71C0.9800
C19—H19A0.9900O80—C811.386 (4)
C19—H19B0.9900O80—H800.94 (6)
C20—C211.533 (3)C81—H81A0.9800
C20—H20A0.9900C81—H81B0.9800
C20—H20B0.9900C81—H81C0.9800
C21—C221.528 (3)
C4—S1—C3101.41 (13)C24—C25—H25A111.1
C56—N1—C1122.33 (19)C26—C25—H25A111.1
C56—N1—H1D115 (2)C24—C25—H25B111.1
C1—N1—H1D120 (2)C26—C25—H25B111.1
C5—N2—C6122.2 (2)H25A—C25—H25B109.0
C5—N2—H2D117 (2)N5—C26—C27113.81 (19)
C6—N2—H2D121 (2)N5—C26—C25102.53 (19)
C11—N3—C12122.7 (2)C27—C26—C25109.92 (18)
C11—N3—H3D119.5 (19)N5—C26—H26111.4 (16)
C12—N3—H3D117.5 (19)C27—C26—H26109.6 (16)
C17—N4—C21120.4 (2)C25—C26—H26109.4 (16)
C17—N4—C18127.5 (2)O5—C27—N6123.1 (2)
C21—N4—C18112.15 (19)O5—C27—C26119.2 (2)
C22—N5—C26126.96 (19)N6—C27—C26117.7 (2)
C22—N5—C23120.3 (2)N6—C28—C36116.46 (18)
C26—N5—C23112.30 (18)N6—C28—C29110.90 (19)
C27—N6—C28120.4 (2)C36—C28—C29108.48 (19)
C27—N6—H6D118 (2)N6—C28—H28109.6 (16)
C28—N6—H6D120 (2)C36—C28—H28101.0 (16)
C36—N7—C37119.8 (2)C29—C28—H28109.9 (16)
C36—N7—H7D121.1 (19)C30—C29—C28111.25 (19)
C37—N7—H7D118.7 (19)C30—C29—H29A109.4
C45—N8—C46120.9 (2)C28—C29—H29A109.4
C45—N8—H8D117 (2)C30—C29—H29B109.4
C46—N8—H8D122 (2)C28—C29—H29B109.4
C50—N9—C51118.21 (19)H29A—C29—H29B108.0
C50—N9—H9D117 (2)C35—C30—C31119.2 (2)
C51—N9—H9D124 (2)C35—C30—C29122.0 (2)
N1—C1—C5112.67 (19)C31—C30—C29118.7 (2)
N1—C1—C2110.83 (19)C32—C31—C30120.5 (2)
C5—C1—C2108.24 (19)C32—C31—H31119.8
N1—C1—H1107.1 (16)C30—C31—H31119.8
C5—C1—H1105.9 (16)C33—C32—C31119.7 (2)
C2—C1—H1112.1 (16)C33—C32—H32120.1
C3—C2—C1114.5 (2)C31—C32—H32120.1
C3—C2—H2A108.6C34—C33—C32120.3 (2)
C1—C2—H2A108.6C34—C33—H33119.8
C3—C2—H2B108.6C32—C33—H33119.8
C1—C2—H2B108.6C33—C34—C35119.8 (2)
H2A—C2—H2B107.6C33—C34—H34120.1
C2—C3—S1115.94 (18)C35—C34—H34120.1
C2—C3—H3A108.3C30—C35—C34120.4 (2)
S1—C3—H3A108.3C30—C35—H35119.8
C2—C3—H3B108.3C34—C35—H35119.8
S1—C3—H3B108.3O6—C36—N7122.9 (2)
H3A—C3—H3B107.4O6—C36—C28117.9 (2)
S1—C4—H4A109.5N7—C36—C28119.0 (2)
S1—C4—H4B109.5N7—C37—C45108.13 (19)
H4A—C4—H4B109.5N7—C37—C38111.67 (19)
S1—C4—H4C109.5C45—C37—C38114.59 (19)
H4A—C4—H4C109.5N7—C37—H37108.2 (18)
H4B—C4—H4C109.5C45—C37—H37105.0 (18)
O1—C5—N2123.8 (2)C38—C37—H37108.9 (19)
O1—C5—C1118.8 (2)C39—C38—C37109.22 (19)
N2—C5—C1117.4 (2)C39—C38—H38A109.8
N2—C6—C7114.02 (18)C37—C38—H38A109.8
N2—C6—C11110.88 (18)C39—C38—H38B109.8
C7—C6—C11112.32 (19)C37—C38—H38B109.8
N2—C6—H6106.3 (17)H38A—C38—H38B108.3
C7—C6—H6106.3 (17)C44—C39—C40118.4 (2)
C11—C6—H6106.4 (17)C44—C39—C38120.3 (2)
C6—C7—C8115.00 (19)C40—C39—C38121.0 (2)
C6—C7—H7A108.5C39—C40—C41120.8 (2)
C8—C7—H7A108.5C39—C40—H40119.6
C6—C7—H7B108.5C41—C40—H40119.6
C8—C7—H7B108.5C42—C41—C40119.6 (2)
H7A—C7—H7B107.5C42—C41—H41120.2
C10—C8—C9110.0 (2)C40—C41—H41120.2
C10—C8—C7112.9 (2)C43—C42—C41120.1 (3)
C9—C8—C7108.9 (2)C43—C42—H42120.0
C10—C8—H8108.3C41—C42—H42120.0
C9—C8—H8108.3C42—C43—C44120.0 (3)
C7—C8—H8108.3C42—C43—H43120.0
C8—C9—H9A109.5C44—C43—H43120.0
C8—C9—H9B109.5C43—C44—C39121.2 (3)
H9A—C9—H9B109.5C43—C44—H44119.4
C8—C9—H9C109.5C39—C44—H44119.4
H9A—C9—H9C109.5O7—C45—N8122.0 (2)
H9B—C9—H9C109.5O7—C45—C37123.4 (2)
C8—C10—H10A109.5N8—C45—C37114.6 (2)
C8—C10—H10B109.5N8—C46—C50112.54 (19)
H10A—C10—H10B109.5N8—C46—C47109.24 (19)
C8—C10—H10C109.5C50—C46—C47112.86 (19)
H10A—C10—H10C109.5N8—C46—H46109.2 (16)
H10B—C10—H10C109.5C50—C46—H46102.8 (16)
O2—C11—N3123.8 (2)C47—C46—H46110.0 (16)
O2—C11—C6121.6 (2)C49—C47—C48110.9 (2)
N3—C11—C6114.5 (2)C49—C47—C46111.2 (2)
N3—C12—C17105.22 (19)C48—C47—C46110.3 (2)
N3—C12—C13112.82 (19)C49—C47—H47108.1
C17—C12—C13111.64 (19)C48—C47—H47108.1
N3—C12—H12109.3 (17)C46—C47—H47108.1
C17—C12—H12109.2 (17)C47—C48—H48A109.5
C13—C12—H12108.6 (17)C47—C48—H48B109.5
C14—C13—C12109.5 (2)H48A—C48—H48B109.5
C14—C13—C15111.4 (2)C47—C48—H48C109.5
C12—C13—C15110.34 (19)H48A—C48—H48C109.5
C14—C13—H13108.5H48B—C48—H48C109.5
C12—C13—H13108.5C47—C49—H49A109.5
C15—C13—H13108.5C47—C49—H49B109.5
C13—C14—H14A109.5H49A—C49—H49B109.5
C13—C14—H14B109.5C47—C49—H49C109.5
H14A—C14—H14B109.5H49A—C49—H49C109.5
C13—C14—H14C109.5H49B—C49—H49C109.5
H14A—C14—H14C109.5O8—C50—N9121.9 (2)
H14B—C14—H14C109.5O8—C50—C46118.5 (2)
C16—C15—C13113.4 (2)N9—C50—C46119.55 (19)
C16—C15—H15A108.9N9—C51—C56111.59 (18)
C13—C15—H15A108.9N9—C51—C52112.97 (19)
C16—C15—H15B108.9C56—C51—C52111.15 (19)
C13—C15—H15B108.9N9—C51—H51104.2 (16)
H15A—C15—H15B107.7C56—C51—H51108.4 (16)
C15—C16—H16A109.5C52—C51—H51108.2 (16)
C15—C16—H16B109.5C53—C52—C54111.8 (2)
H16A—C16—H16B109.5C53—C52—C51112.67 (19)
C15—C16—H16C109.5C54—C52—C51109.49 (19)
H16A—C16—H16C109.5C53—C52—H52107.6
H16B—C16—H16C109.5C54—C52—H52107.6
O3—C17—N4121.5 (2)C51—C52—H52107.6
O3—C17—C12120.7 (2)C52—C53—H53A109.5
N4—C17—C12117.6 (2)C52—C53—H53B109.5
N4—C18—C19103.23 (18)H53A—C53—H53B109.5
N4—C18—H18A111.1C52—C53—H53C109.5
C19—C18—H18A111.1H53A—C53—H53C109.5
N4—C18—H18B111.1H53B—C53—H53C109.5
C19—C18—H18B111.1C55—C54—C52114.2 (2)
H18A—C18—H18B109.1C55—C54—H54A108.7
C18—C19—C20103.2 (2)C52—C54—H54A108.7
C18—C19—H19A111.1C55—C54—H54B108.7
C20—C19—H19A111.1C52—C54—H54B108.7
C18—C19—H19B111.1H54A—C54—H54B107.6
C20—C19—H19B111.1C54—C55—H55A109.5
H19A—C19—H19B109.1C54—C55—H55B109.5
C19—C20—C21103.27 (19)H55A—C55—H55B109.5
C19—C20—H20A111.1C54—C55—H55C109.5
C21—C20—H20A111.1H55A—C55—H55C109.5
C19—C20—H20B111.1H55B—C55—H55C109.5
C21—C20—H20B111.1O9—C56—N1122.6 (2)
H20A—C20—H20B109.1O9—C56—C51120.2 (2)
N4—C21—C22110.41 (19)N1—C56—C51117.18 (19)
N4—C21—C20102.88 (18)C61—O60—H60107 (3)
C22—C21—C20109.62 (19)O60—C61—H61A109.5
N4—C21—H21110.7 (18)O60—C61—H61B109.5
C22—C21—H21110.7 (17)H61A—C61—H61B109.5
C20—C21—H21112.3 (18)O60—C61—H61C109.5
O4—C22—N5121.1 (2)H61A—C61—H61C109.5
O4—C22—C21121.3 (2)H61B—C61—H61C109.5
N5—C22—C21117.4 (2)C71—O70—H70101.3 (18)
N5—C23—C24104.12 (19)O70—C71—H71A109.5
N5—C23—H23A110.9O70—C71—H71B109.5
C24—C23—H23A110.9H71A—C71—H71B109.5
N5—C23—H23B110.9O70—C71—H71C109.5
C24—C23—H23B110.9H71A—C71—H71C109.5
H23A—C23—H23B109.0H71B—C71—H71C109.5
C25—C24—C23104.82 (19)C81—O80—H80107 (3)
C25—C24—H24A110.8O80—C81—H81A109.5
C23—C24—H24A110.8O80—C81—H81B109.5
C25—C24—H24B110.8H81A—C81—H81B109.5
C23—C24—H24B110.8O80—C81—H81C109.5
H24A—C24—H24B108.9H81A—C81—H81C109.5
C24—C25—C26103.41 (19)H81B—C81—H81C109.5
C56—N1—C1—C583.2 (3)N5—C26—C27—O5177.0 (2)
C56—N1—C1—C2155.4 (2)C25—C26—C27—O568.6 (3)
N1—C1—C2—C356.0 (3)N5—C26—C27—N64.6 (3)
C5—C1—C2—C3179.94 (19)C25—C26—C27—N6109.7 (2)
C1—C2—C3—S151.7 (3)C27—N6—C28—C3698.9 (3)
C4—S1—C3—C253.6 (2)C27—N6—C28—C29136.4 (2)
C6—N2—C5—O14.8 (3)N6—C28—C29—C3075.2 (2)
C6—N2—C5—C1172.38 (18)C36—C28—C29—C30155.7 (2)
N1—C1—C5—O1178.92 (19)C28—C29—C30—C35109.0 (3)
C2—C1—C5—O158.2 (3)C28—C29—C30—C3171.0 (3)
N1—C1—C5—N23.7 (3)C35—C30—C31—C321.4 (4)
C2—C1—C5—N2119.2 (2)C29—C30—C31—C32178.6 (2)
C5—N2—C6—C774.5 (3)C30—C31—C32—C330.3 (4)
C5—N2—C6—C1153.4 (3)C31—C32—C33—C340.9 (4)
N2—C6—C7—C848.7 (3)C32—C33—C34—C351.0 (4)
C11—C6—C7—C8175.9 (2)C31—C30—C35—C341.3 (4)
C6—C7—C8—C1059.3 (3)C29—C30—C35—C34178.7 (2)
C6—C7—C8—C9178.2 (2)C33—C34—C35—C300.1 (4)
C12—N3—C11—O24.0 (4)C37—N7—C36—O63.9 (4)
C12—N3—C11—C6172.9 (2)C37—N7—C36—C28171.5 (2)
N2—C6—C11—O2140.2 (2)N6—C28—C36—O6160.7 (2)
C7—C6—C11—O211.3 (3)C29—C28—C36—O673.4 (3)
N2—C6—C11—N342.8 (3)N6—C28—C36—N723.7 (3)
C7—C6—C11—N3171.7 (2)C29—C28—C36—N7102.3 (2)
C11—N3—C12—C17117.2 (2)C36—N7—C37—C45116.6 (2)
C11—N3—C12—C13120.8 (2)C36—N7—C37—C38116.4 (2)
N3—C12—C13—C14175.2 (2)N7—C37—C38—C3959.6 (3)
C17—C12—C13—C1456.9 (3)C45—C37—C38—C39177.1 (2)
N3—C12—C13—C1561.9 (3)C37—C38—C39—C4474.1 (3)
C17—C12—C13—C15179.9 (2)C37—C38—C39—C40100.0 (3)
C14—C13—C15—C1668.6 (3)C44—C39—C40—C411.3 (4)
C12—C13—C15—C16169.6 (2)C38—C39—C40—C41172.8 (2)
C21—N4—C17—O32.2 (4)C39—C40—C41—C420.4 (4)
C18—N4—C17—O3178.2 (2)C40—C41—C42—C431.1 (4)
C21—N4—C17—C12174.4 (2)C41—C42—C43—C440.1 (5)
C18—N4—C17—C125.3 (4)C42—C43—C44—C391.7 (5)
N3—C12—C17—O376.7 (3)C40—C39—C44—C432.3 (4)
C13—C12—C17—O346.0 (3)C38—C39—C44—C43171.8 (3)
N3—C12—C17—N499.9 (2)C46—N8—C45—O714.8 (3)
C13—C12—C17—N4137.4 (2)C46—N8—C45—C37162.8 (2)
C17—N4—C18—C19169.4 (2)N7—C37—C45—O7104.9 (3)
C21—N4—C18—C1910.9 (3)C38—C37—C45—O720.4 (3)
N4—C18—C19—C2030.8 (2)N7—C37—C45—N872.7 (2)
C18—C19—C20—C2139.5 (2)C38—C37—C45—N8162.1 (2)
C17—N4—C21—C2276.8 (3)C45—N8—C46—C5063.9 (3)
C18—N4—C21—C22103.5 (2)C45—N8—C46—C47169.9 (2)
C17—N4—C21—C20166.3 (2)N8—C46—C47—C49170.4 (2)
C18—N4—C21—C2013.4 (2)C50—C46—C47—C4944.4 (3)
C19—C20—C21—N432.3 (2)N8—C46—C47—C4866.1 (3)
C19—C20—C21—C2285.2 (2)C50—C46—C47—C48167.9 (2)
C26—N5—C22—O4174.6 (2)C51—N9—C50—O82.7 (3)
C23—N5—C22—O413.3 (3)C51—N9—C50—C46177.10 (19)
C26—N5—C22—C219.8 (3)N8—C46—C50—O8136.5 (2)
C23—N5—C22—C21162.3 (2)C47—C46—C50—O899.3 (2)
N4—C21—C22—O427.3 (3)N8—C46—C50—N943.7 (3)
C20—C21—C22—O485.4 (3)C47—C46—C50—N980.5 (3)
N4—C21—C22—N5157.2 (2)C50—N9—C51—C5669.8 (3)
C20—C21—C22—N590.2 (2)C50—N9—C51—C52164.1 (2)
C22—N5—C23—C24171.6 (2)N9—C51—C52—C5379.7 (2)
C26—N5—C23—C241.6 (3)C56—C51—C52—C5346.6 (3)
N5—C23—C24—C2520.4 (3)N9—C51—C52—C54155.2 (2)
C23—C24—C25—C2634.1 (3)C56—C51—C52—C5478.4 (2)
C22—N5—C26—C2791.4 (3)C53—C52—C54—C5565.8 (3)
C23—N5—C26—C2796.0 (2)C51—C52—C54—C55168.6 (2)
C22—N5—C26—C25150.0 (2)C1—N1—C56—O96.1 (4)
C23—N5—C26—C2522.7 (2)C1—N1—C56—C51174.6 (2)
C24—C25—C26—N534.2 (2)N9—C51—C56—O9160.7 (2)
C24—C25—C26—C2787.1 (2)C52—C51—C56—O972.2 (3)
C28—N6—C27—O511.7 (3)N9—C51—C56—N119.9 (3)
C28—N6—C27—C26166.60 (19)C52—C51—C56—N1107.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O70.87 (3)2.29 (3)3.046 (3)145 (3)
N2—H2D···O80.87 (3)2.11 (3)2.923 (3)155 (3)
N7—H7D···O30.84 (3)2.18 (3)2.956 (3)153 (3)
N8—H8D···O2i0.83 (3)2.52 (3)3.274 (3)151 (3)
N9—H9D···O600.91 (3)2.00 (3)2.896 (3)169 (3)
N6—H6D···O70ii0.77 (3)2.34 (3)3.071 (3)159 (3)
O60—H60···O1i0.95 (4)1.79 (4)2.705 (3)160 (4)
O70—H70···O4iii1.01 (3)1.91 (2)2.861 (3)157 (3)
O80—H80···O9iv0.94 (6)1.86 (6)2.786 (3)165 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z; (iii) x, y+1/2, z; (iv) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC56H83N9O9S·3CH4O
Mr1154.50
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)10.374 (2), 19.624 (4), 15.576 (4)
β (°) 100.0653 (13)
V3)3122.1 (12)
Z2
Radiation typeSynchrotron, λ = 0.68878 Å
µ (mm1)0.12
Crystal size (mm)0.13 × 0.10 × 0.10
Data collection
Diffractometer300mm 16K Rayonix MX300 HE CCD detector with an ACCEL MD2 microdiffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.985, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
177237, 15255, 13940
Rint0.055
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.116, 1.12
No. of reflections15255
No. of parameters809
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.34
Absolute structureFlack (1983), 7080 Friedel pairs
Absolute structure parameter0.09 (7)

Computer programs: MXDC, Macromolecular Crystallography Data Collector (Canadian Light Source, 2007), SAINT (Bruker, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1993) and SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O70.87 (3)2.29 (3)3.046 (3)145 (3)
N2—H2D···O80.87 (3)2.11 (3)2.923 (3)155 (3)
N7—H7D···O30.84 (3)2.18 (3)2.956 (3)153 (3)
N8—H8D···O2i0.83 (3)2.52 (3)3.274 (3)151 (3)
N9—H9D···O600.91 (3)2.00 (3)2.896 (3)169 (3)
N6—H6D···O70ii0.77 (3)2.34 (3)3.071 (3)159 (3)
O60—H60···O1i0.95 (4)1.79 (4)2.705 (3)160 (4)
O70—H70···O4iii1.01 (3)1.91 (2)2.861 (3)157 (3)
O80—H80···O9iv0.94 (6)1.86 (6)2.786 (3)165 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z; (iii) x, y+1/2, z; (iv) x, y+1/2, z+1.
Backbone torsion angles ϕ, ψ, ω and side chain torsion angle χ1 (°)in CLP-B top
ϕψωχ1
Met1-83.2 (3)-3.7 (3)174.6 (2)-56.0 (3)
Leu253.4 (3)42.8 (3)-172.4 (2)-48.7 (3)
Ile3-117.2 (3)99.9 (2)172.9 (2)-61.9 (3)
Pro4-76.8 (3)157.2 (2)-174.4 (2)32.3 (2)
Pro5-91.4 (3)-4.6 (3)-9.8 (3)34.2 (2)
Phe6-98.9 (3)-23.7 (3)-166.6 (2)-75.2 (2)
Phe7-116.6 (2)72.7 (3)-171.5 (2)-59.6 (3)
Val8-63.9 (3)-43.7 (3)-162.8 (2)-66.1 (19)
Ile9-69.8 (3)-19.9 (3)-177.1 (2)-155.2 (2)
 

Acknowledgements

Funding for this research was contributed by The Agriculture Development Fund (ADF) administered by the Saskatchewan Ministry of Agriculture (SMA), the Total Utililization Flax Genomics and the National Sciences and Engineering Research Council (NSERC). The data collection was performed at the Canadian Light Source (CLS), which is supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada and the University of Saskatchewan.

References

First citationBruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCahn, R. S., Ingold, C. K. & Prelog, V. (1966). Angew. Chem. Int. Ed. 5, 385–415.  CrossRef CAS Google Scholar
First citationCanadian Light Source (2007). MXDC. Canadian Light Source, Saskatoon, Saskatchewan, Canada.  Google Scholar
First citationDi Blasio, B., Benedetti, E., Pavone, C. & Goodman, M. (1987). Biopolymers, 26, 2099–2102.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationDi Blasio, B., Benedetti, E., Pavone, C. & Temussi, P. A. (1989). J. Am. Chem. Soc. 111, 9089–9092.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaymes, T. J., Cebrat, M., Siemion, I. Z. & Kay, J. E. (1997). FEBS Lett. 418, 224–227.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGhadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. (1993). Nature (London), 366, 324–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJadhav, P., Schatte, G., Labiuk, S., Burnett, P.-G., Li, B., Okinyo-Owiti, D., Reaney, M., Grochulski, P., Fodje, M. & Sammynaiken, R. (2011). Acta Cryst. E67, o2360–o2361.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2001). Phytochemistry, 57, 251–260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2002). Tetrahedron, 58, 5135–5140.  Web of Science CrossRef CAS Google Scholar
First citationMorita, H., Shishido, A., Matsumoto, T., Itokawa, H. & Takeya, K. (1999). Tetrahedron, 55, 967–976.  Web of Science CrossRef CAS Google Scholar
First citationQuail, J. W., Shen, J., Reaney, M. J. T. & Sammynaiken, R. (2009). Acta Cryst. E65, o1913–o1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRempel, B., Gui, B., Maley, J., Reaney, M. & Sammynaiken, R. (2010). J. Biomed. Biotechnol. 2010, 1–8.  Web of Science CrossRef Google Scholar
First citationRovero, P., Quartara, L. & Fabbri, G. (1991). Tetrahedron Lett. 32, 2639–2642.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieczorek, Z., Bengsston, B., Trojnar, I. & Siemion, I. Z. (1991). Peptide Res. 4, 275–283.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o50-o51
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds