supplementary materials


lh5392 scheme

Acta Cryst. (2012). E68, o131    [ doi:10.1107/S1600536811053062 ]

1H-1,2,4-Triazol-4-ium (3,4-dichlorophenyl)methanesulfonate

L. Zhang, G. L. V. Damu, J.-S. Lv, R.-X. Geng and C.-H. Zhou

Abstract top

In the title molecular salt, C2H4N3+·C7H5Cl2O3S-, C-C-S angle [112.25 (18)°] deviates slightly from that expected for ideal sp3-hybridization geometry. In the crystal, the components are linked by N-H...O and bifurcated N-H...(O,O) hydrogen bonds into chains parallel to [110].

Comment top

Triazole is a unique molecule which could exert diverse non-covalent interactions and endow triazole derivatives to exhibit various potential appplications in medicinal chemistry (Wang & Zhou, 2011), argrochemical and chemical fields (Bai et al., 2007) and material science (Chang et al., 2011). Work has shown that triazole derivatives could be used as proton transport facilitators for sulfonic acid based membranes for high temperature fuel cell operations (Sen et al., 2010; Subbaraman et al., 2009). Our interest is to investigate the intreractions of triazole compounds with diverse anions for the formation of supramolecular drugs (Zhou et al., 2009). Herein we report the crystal structure of title compound.

In the molecular structure the title compound (Fig. 1) there is a slight deviation of the C2—C1—S1 angle (112.25°) in terms ideal sp3 hybridization geometry. In the crystal, the components are linked by N—H···O hydrogen bonds and bifurcated N—H···(O,O) into one dimensional chains along [110].

Related literature top

For applications of triazole compounds, see: Sen et al. (2010); Subbaraman et al. (2009); Wang & Zhou (2011); Zhou et al. (2009); Bai et al. (2007); Chang et al.(2011).

Experimental top

A crystal of title the compound suitable for X-ray analysis was grown from the solution of 1,2,4-triazole and (3,4-dichlorophenyl)methanesulfonic acid in methanol by slow evaporation at room temperature.

Refinement top

The H atoms of the anion were placed in calculated positions with C—H = 0.93Å (aromatic) and 0.97Å (methylene) and refined in a riding-motion approximation with Uiso(H) = 1.2Ueq(C). All H atoms in the cation were refined independently with isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level.
1H-1,2,4-Triazol-4-ium (3,4-dichlorophenyl)methanesulfonate top
Crystal data top
C2H4N3+·C7H5Cl2O3SZ = 2
Mr = 310.15F(000) = 316
Triclinic, P1Dx = 1.650 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2430 (6) ÅCell parameters from 4951 reflections
b = 8.2970 (8) Åθ = 2.8–27.5°
c = 14.5656 (15) ŵ = 0.69 mm1
α = 94.330 (5)°T = 296 K
β = 98.387 (6)°Block, colorless
γ = 92.292 (5)°0.30 × 0.28 × 0.25 mm
V = 624.22 (11) Å3
Data collection top
Bruker SMART CCD
diffractometer
2196 independent reflections
Radiation source: fine-focus sealed tube2000 reflections with I > 2σ(I)
graphiteRint = 0.030
φ scans and ω scans with κ offsetsθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.820, Tmax = 0.846k = 99
8971 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.6305P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2196 reflectionsΔρmax = 0.69 e Å3
180 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.064 (7)
Crystal data top
C2H4N3+·C7H5Cl2O3Sγ = 92.292 (5)°
Mr = 310.15V = 624.22 (11) Å3
Triclinic, P1Z = 2
a = 5.2430 (6) ÅMo Kα radiation
b = 8.2970 (8) ŵ = 0.69 mm1
c = 14.5656 (15) ÅT = 296 K
α = 94.330 (5)°0.30 × 0.28 × 0.25 mm
β = 98.387 (6)°
Data collection top
Bruker SMART CCD
diffractometer
2196 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2000 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.846Rint = 0.030
8971 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124Δρmax = 0.69 e Å3
S = 1.03Δρmin = 0.60 e Å3
2196 reflectionsAbsolute structure: ?
180 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H4M0.257 (7)0.126 (5)0.067 (2)0.059 (10)*
C10.5971 (5)0.1996 (3)0.24949 (19)0.0405 (6)
H1A0.42220.16540.24910.049*
H1B0.61180.29930.28010.049*
C20.7822 (5)0.0722 (3)0.30368 (18)0.0393 (6)
C30.7467 (7)0.0915 (4)0.2965 (2)0.0522 (8)
H30.60210.12400.25890.063*
C40.9246 (8)0.2072 (4)0.3449 (2)0.0577 (9)
C51.1357 (8)0.1603 (4)0.4029 (2)0.0634 (9)
C61.1715 (8)0.0016 (5)0.4095 (3)0.0751 (11)
H61.31460.03430.44780.090*
C70.9978 (7)0.1156 (4)0.3600 (2)0.0560 (8)
H71.02660.22480.36470.067*
C80.1007 (6)0.1330 (3)0.1058 (2)0.0448 (7)
C100.1080 (5)0.3440 (3)0.0826 (2)0.0404 (6)
Cl10.8778 (3)0.40861 (12)0.33114 (10)0.1080 (5)
Cl21.3556 (3)0.30086 (16)0.46816 (10)0.1064 (5)
N10.1333 (4)0.3833 (3)0.10869 (16)0.0393 (6)
N20.2733 (4)0.2507 (3)0.12354 (19)0.0476 (6)
N30.1339 (4)0.1855 (3)0.08066 (18)0.0423 (6)
O10.4994 (3)0.3828 (2)0.09619 (13)0.0383 (5)
O20.5688 (4)0.0964 (2)0.08476 (13)0.0417 (5)
O30.9286 (3)0.2589 (2)0.13509 (14)0.0446 (5)
S10.65640 (11)0.23697 (7)0.13202 (4)0.0291 (2)
H3M0.132 (7)0.035 (5)0.108 (3)0.070 (11)*
H2M0.232 (8)0.408 (5)0.070 (3)0.069 (11)*
H1M0.197 (8)0.480 (5)0.111 (3)0.069 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0418 (15)0.0362 (14)0.0448 (15)0.0018 (11)0.0112 (12)0.0037 (11)
C20.0474 (16)0.0346 (14)0.0369 (13)0.0005 (11)0.0119 (12)0.0001 (11)
C30.067 (2)0.0388 (16)0.0495 (16)0.0047 (14)0.0037 (14)0.0031 (13)
C40.089 (3)0.0335 (16)0.0525 (18)0.0047 (16)0.0240 (18)0.0040 (13)
C50.069 (2)0.057 (2)0.060 (2)0.0170 (17)0.0137 (17)0.0196 (16)
C60.069 (2)0.061 (2)0.083 (3)0.0053 (18)0.020 (2)0.0160 (19)
C70.060 (2)0.0419 (17)0.0606 (19)0.0051 (14)0.0021 (15)0.0072 (14)
C80.0402 (16)0.0259 (14)0.0685 (19)0.0036 (11)0.0082 (13)0.0052 (13)
C100.0316 (14)0.0324 (14)0.0553 (16)0.0028 (11)0.0013 (12)0.0011 (12)
Cl10.1756 (14)0.0328 (5)0.1118 (9)0.0042 (6)0.0125 (9)0.0028 (5)
Cl20.1059 (10)0.0813 (8)0.1162 (10)0.0352 (7)0.0009 (7)0.0397 (7)
N10.0373 (13)0.0243 (12)0.0543 (14)0.0071 (9)0.0030 (10)0.0023 (10)
N20.0283 (12)0.0420 (14)0.0704 (16)0.0012 (10)0.0000 (11)0.0059 (12)
N30.0267 (12)0.0332 (12)0.0651 (16)0.0091 (10)0.0086 (11)0.0048 (11)
O10.0332 (10)0.0229 (9)0.0571 (11)0.0051 (7)0.0052 (8)0.0026 (8)
O20.0462 (11)0.0250 (9)0.0518 (11)0.0040 (8)0.0012 (8)0.0092 (8)
O30.0264 (10)0.0443 (11)0.0617 (12)0.0004 (8)0.0071 (8)0.0051 (9)
S10.0251 (4)0.0196 (3)0.0417 (4)0.0026 (2)0.0042 (2)0.0009 (2)
Geometric parameters (Å, °) top
C1—C21.500 (4)C7—H70.9300
C1—S11.790 (3)C8—N21.289 (4)
C1—H1A0.9700C8—N31.332 (4)
C1—H1B0.9700C8—H3M0.84 (4)
C2—C71.374 (4)C10—N11.288 (4)
C2—C31.388 (4)C10—N31.314 (4)
C3—C41.387 (5)C10—H2M0.86 (4)
C3—H30.9300N1—N21.360 (3)
C4—C51.378 (6)N1—H1M0.86 (4)
C4—Cl11.721 (3)N3—H4M0.79 (4)
C5—C61.373 (6)O1—S11.4538 (17)
C5—Cl21.732 (3)O2—S11.4550 (19)
C6—C71.371 (5)O3—S11.4405 (19)
C6—H60.9300
C2—C1—S1112.25 (18)C6—C7—H7119.3
C2—C1—H1A109.2C2—C7—H7119.3
S1—C1—H1A109.2N2—C8—N3111.8 (3)
C2—C1—H1B109.2N2—C8—H3M124 (3)
S1—C1—H1B109.2N3—C8—H3M124 (3)
H1A—C1—H1B107.9N1—C10—N3106.9 (3)
C7—C2—C3118.1 (3)N1—C10—H2M128 (3)
C7—C2—C1120.3 (3)N3—C10—H2M126 (3)
C3—C2—C1121.6 (3)C10—N1—N2111.6 (2)
C4—C3—C2120.7 (3)C10—N1—H1M123 (3)
C4—C3—H3119.7N2—N1—H1M125 (3)
C2—C3—H3119.7C8—N2—N1103.0 (2)
C5—C4—C3120.0 (3)C10—N3—C8106.8 (2)
C5—C4—Cl1120.9 (3)C10—N3—H4M131 (3)
C3—C4—Cl1119.0 (3)C8—N3—H4M122 (3)
C6—C5—C4119.2 (3)O3—S1—O1112.59 (11)
C6—C5—Cl2119.2 (3)O3—S1—O2113.48 (12)
C4—C5—Cl2121.6 (3)O1—S1—O2111.99 (11)
C7—C6—C5120.5 (4)O3—S1—C1107.50 (13)
C7—C6—H6119.7O1—S1—C1104.86 (12)
C5—C6—H6119.7O2—S1—C1105.69 (13)
C6—C7—C2121.4 (3)
S1—C1—C2—C796.9 (3)C5—C6—C7—C20.9 (6)
S1—C1—C2—C381.1 (3)C3—C2—C7—C61.2 (5)
C7—C2—C3—C40.1 (5)C1—C2—C7—C6179.3 (3)
C1—C2—C3—C4177.9 (3)N3—C10—N1—N20.8 (3)
C2—C3—C4—C51.8 (5)N3—C8—N2—N10.4 (3)
C2—C3—C4—Cl1178.0 (2)C10—N1—N2—C80.7 (3)
C3—C4—C5—C62.2 (5)N1—C10—N3—C80.5 (3)
Cl1—C4—C5—C6177.7 (3)N2—C8—N3—C100.0 (4)
C3—C4—C5—Cl2177.3 (3)C2—C1—S1—O348.8 (2)
Cl1—C4—C5—Cl22.8 (4)C2—C1—S1—O1168.79 (19)
C4—C5—C6—C70.8 (6)C2—C1—S1—O272.7 (2)
Cl2—C5—C6—C7178.7 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1M···O1i0.85 (4)1.96 (4)2.709 (3)146 (4)
N3—H4M···O2ii0.79 (4)2.08 (4)2.768 (3)146 (3)
N3—H4M···O2iii0.79 (4)2.54 (3)3.089 (3)128 (3)
Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z; (iii) −x, −y, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1M···O1i0.85 (4)1.96 (4)2.709 (3)146 (4)
N3—H4M···O2ii0.79 (4)2.08 (4)2.768 (3)146 (3)
N3—H4M···O2iii0.79 (4)2.54 (3)3.089 (3)128 (3)
Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z; (iii) −x, −y, −z.
Acknowledgements top

This work was partially supported by the Natural Science Foundation of China (21172181), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP 20110182110007) and the Fundamental Research Funds for the Central Universities (XDJK2011D007).

references
References top

Bai, X., Zhou, C.-H. & Mi, J.-L. (2007). Chem. Res. Appl. 19, 721–729.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chang, J.-J., Wang, Y., Zhang, H.-Z., Zhou, C.-H., Geng, R.-X. & Ji, Q.-G. (2011). Chem. J. Chin. Univ. 32, 1970–1985.

Sen, U., Bozkurt, A. & Ata, A. (2010). J. Power Sources, 195, 7720–7726.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Subbaraman, R., Ghassemi, H. & Zawodzinski, T. Jr (2009). Solid State Ionics, 180, 1143–1150.

Wang, Y. & Zhou, C.-H. (2011). Sci. Sin. Chem. 41, 1429–1456.

Zhou, C.-H., Gan, L.-L., Zhang, Y.-Y., Zhang, F.-F., Wang, G.-Z., Jin, L. & Geng, R. X. (2009). Sci. China Ser. B, 52, 415–458.