supplementary materials


mw2040 scheme

Acta Cryst. (2012). E68, o182    [ doi:10.1107/S1600536811052500 ]

3-[(2-Formylthiophen-3-yl)(hydroxy)methyl]thiophene-2-carbaldehyde

L. Sun, G. Li and Q. Su

Abstract top

In the title compound, C11H8O3S2, the dihedral angle between the mean planes of the two thiophene rings is 65.10 (10)°. Intramolecular C-H...O interactions form S(6) and S(7) ring motifs. In the crystal, chains along the a axis are formed by C-H...O interactions. Adjacent chains are connected into a three-dimensional network by C-H...O and O-H...O interactions.

Comment top

Thiophene aldehydes and their homologues are an important class of organic compounds. Some of them can be used as precursors for syntheses of azomethines (also named Schiff) (Guarín et al., 2007; Basu et al., 2011) thiacarbaporphyrins (Jain et al., 2010), and dicyanovinyl-derivatives (Raposo et al., 2003, 2004) for optical applications. We are interested in the structures and properties of Schiff base ligands and their metal complexes (Su, Wu, Li, et al. 2007a, 2007b; Su, Gao, et al. 2007c; Su et al. 2009). Herein, a new thiophene dialdehyde, of which the aldehyde group can easily react with all kinds of arylamines to form Schiff-bases, was synthesized and the crystal structure of the title compound, (I) (Fig. 1), is reported.

In the title molecule, Fig. 1, the angle between the mean planes of the two thiophene rings is 65.1°. The two aldehyde groups are nearly coplanar with the thiophene rings to which they are attached. The C3–C2–C1–C5, C6–C2–C3–C4, C6–C8–C9–C10 and C9–C8–C7–C11 torsion angles are -174.3 (2), -178.46 (19), 178.91 (18) and 178.7 (2)°, respectively. Both S(6) and S(7) ring motifs (Bernstein et al., 1995) are formed due to intramolecular C—H···O interactions (Fig. 2 and Table 1). In the crystal there exist intermolecular C—H···O interactions with the graph-set motifs R21(8) and R22(13) (Bernstein et al., 1995) which form one-dimensional chains along the a axis (Fig. 2a and Table 1). The adjacent chains are connected into a 3-dimensional network by intermolecular C4—H4···O1 and O1—H1···O3 interactions (Fig. 2b and Table 1).

Related literature top

For details and applications of thiophene-based aldehydes, see: Basu & Das (2011); Guarín et al. (2007); Herbivo et al. (2009); Jain et al. (2010). For hydrogen-bonding motifs, see: Bernstein et al. (1995). For optical applications of formyl thiophene derivatives, see: Raposo & Kirsch (2003); Raposo et al. (2004). For related Schiff base compounds reported by our group, see: Su et al. (2007a,b,c, 2009).

Experimental top

Compound (I) was synthesized from thiophene-3-carbaldehyde, n-BuLi, 3-bromothiophene and ethyl formate via a one-pot reaction (manuscript in preparation). It was crystallized slowly from ethanol at 298 K.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic and carbonyl carbons) and 0.98 (methine) Å, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 Ueq(C). The atom H1 was located in a difference map and included as a riding contribution with O—H adjusted to 0.82 Å and with UUiso(H) = 1.2 UUeq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of (I). (a) shows the 1-D chain formed by intramolecular and intermolecular C—H···O interactions. (b) shows the 3-D network formed by 1-D chains through further intermolecular C4—H4···O1 and O1—H1···O3 interactions. Hydrogen bonds are indicated by dashed lines.
3-[(2-Formylthiophen-3-yl)(hydroxy)methyl]thiophene-2-carbaldehyde top
Crystal data top
C11H8O3S2F(000) = 520
Mr = 252.29Dx = 1.554 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2097 reflections
a = 7.6227 (18) Åθ = 2.5–26.1°
b = 10.136 (2) ŵ = 0.48 mm1
c = 14.272 (3) ÅT = 293 K
β = 101.998 (4)°Block, yellow
V = 1078.7 (4) Å30.26 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2122 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 9.00 pixels mm-1θmax = 26.1°, θmin = 2.5°
phi and ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1012
Tmin = 0.886, Tmax = 0.906l = 1717
6687 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.3301P]
where P = (Fo2 + 2Fc2)/3
2122 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C11H8O3S2V = 1078.7 (4) Å3
Mr = 252.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6227 (18) ŵ = 0.48 mm1
b = 10.136 (2) ÅT = 293 K
c = 14.272 (3) Å0.26 × 0.24 × 0.21 mm
β = 101.998 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2122 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1798 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.906Rint = 0.025
6687 measured reflectionsθmax = 26.1°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.31 e Å3
S = 1.03Δρmin = 0.17 e Å3
2122 reflectionsAbsolute structure: ?
145 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18693 (8)0.05474 (6)0.40611 (4)0.0483 (2)
S20.35779 (8)0.71529 (6)0.45073 (4)0.04438 (19)
O10.2719 (2)0.41275 (16)0.18884 (10)0.0461 (4)
H10.21890.36050.14900.069*
O30.0407 (2)0.72325 (18)0.41728 (12)0.0549 (5)
C20.2269 (3)0.2727 (2)0.32022 (14)0.0333 (5)
O20.1559 (2)0.3386 (2)0.33753 (15)0.0696 (6)
C10.1038 (3)0.2063 (2)0.36192 (15)0.0364 (5)
C80.2905 (3)0.5135 (2)0.33862 (14)0.0328 (5)
C110.0174 (3)0.6327 (2)0.37609 (15)0.0434 (5)
H110.06440.57590.33880.052*
C70.2056 (3)0.6090 (2)0.38216 (14)0.0356 (5)
C50.0793 (3)0.2385 (3)0.36692 (18)0.0480 (6)
H50.14250.17690.39510.058*
C90.4790 (3)0.5276 (2)0.36272 (15)0.0391 (5)
H90.55820.47160.34070.047*
C40.3810 (3)0.0795 (2)0.36802 (17)0.0487 (6)
H40.47400.01840.37590.058*
C60.1976 (3)0.4072 (2)0.27314 (14)0.0344 (5)
H60.06880.42600.25600.041*
C100.5322 (3)0.6320 (2)0.42159 (16)0.0435 (5)
H100.65170.65530.44360.052*
C30.3852 (3)0.1982 (2)0.32482 (16)0.0424 (5)
H30.48250.22760.30060.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0545 (4)0.0366 (4)0.0535 (4)0.0026 (3)0.0109 (3)0.0055 (3)
S20.0443 (3)0.0373 (3)0.0493 (4)0.0010 (2)0.0045 (2)0.0050 (3)
O10.0513 (10)0.0534 (10)0.0367 (8)0.0124 (8)0.0166 (7)0.0050 (7)
O30.0456 (10)0.0604 (12)0.0575 (10)0.0198 (8)0.0077 (8)0.0096 (9)
C20.0316 (11)0.0347 (12)0.0339 (11)0.0004 (8)0.0072 (8)0.0061 (9)
O20.0489 (11)0.0614 (13)0.1079 (16)0.0157 (9)0.0376 (10)0.0192 (11)
C10.0396 (11)0.0329 (12)0.0374 (11)0.0024 (9)0.0094 (9)0.0012 (9)
C80.0331 (11)0.0305 (11)0.0348 (10)0.0013 (8)0.0073 (8)0.0064 (8)
C110.0395 (12)0.0456 (14)0.0435 (12)0.0073 (10)0.0050 (10)0.0002 (10)
C70.0346 (11)0.0351 (12)0.0355 (11)0.0012 (9)0.0040 (8)0.0025 (9)
C50.0430 (13)0.0479 (15)0.0586 (15)0.0019 (11)0.0229 (11)0.0016 (12)
C90.0322 (11)0.0417 (13)0.0451 (12)0.0005 (9)0.0118 (9)0.0047 (10)
C40.0418 (13)0.0418 (14)0.0599 (15)0.0112 (10)0.0047 (11)0.0057 (11)
C60.0306 (10)0.0379 (12)0.0358 (11)0.0001 (9)0.0094 (8)0.0012 (9)
C100.0326 (11)0.0455 (14)0.0513 (13)0.0065 (10)0.0061 (9)0.0060 (11)
C30.0327 (11)0.0430 (13)0.0519 (13)0.0018 (10)0.0098 (10)0.0056 (11)
Geometric parameters (Å, °) top
S1—C41.698 (3)C8—C91.414 (3)
S1—C11.730 (2)C8—C61.503 (3)
S2—C101.698 (2)C11—C71.439 (3)
S2—C71.730 (2)C11—H110.9300
O1—C61.434 (2)C5—H50.9300
O1—H10.8200C9—C101.359 (3)
O3—C111.222 (3)C9—H90.9300
C2—C11.386 (3)C4—C31.355 (3)
C2—C31.414 (3)C4—H40.9300
C2—C61.515 (3)C6—H60.9800
O2—C51.201 (3)C10—H100.9300
C1—C51.450 (3)C3—H30.9300
C8—C71.383 (3)
C4—S1—C191.70 (11)C1—C5—H5117.4
C10—S2—C791.10 (11)C10—C9—C8112.8 (2)
C6—O1—H1109.5C10—C9—H9123.6
C1—C2—C3111.6 (2)C8—C9—H9123.6
C1—C2—C6125.23 (18)C3—C4—S1112.42 (18)
C3—C2—C6123.17 (19)C3—C4—H4123.8
C2—C1—C5131.0 (2)S1—C4—H4123.8
C2—C1—S1111.02 (16)O1—C6—C8106.03 (16)
C5—C1—S1117.75 (17)O1—C6—C2111.10 (17)
C7—C8—C9111.52 (19)C8—C6—C2111.21 (16)
C7—C8—C6125.27 (18)O1—C6—H6109.5
C9—C8—C6123.21 (19)C8—C6—H6109.5
O3—C11—C7123.5 (2)C2—C6—H6109.5
O3—C11—H11118.2C9—C10—S2112.97 (17)
C7—C11—H11118.2C9—C10—H10123.5
C8—C7—C11130.1 (2)S2—C10—H10123.5
C8—C7—S2111.65 (15)C4—C3—C2113.3 (2)
C11—C7—S2118.27 (17)C4—C3—H3123.4
O2—C5—C1125.2 (2)C2—C3—H3123.4
O2—C5—H5117.4
C3—C2—C1—C5174.3 (2)C7—C8—C9—C100.8 (3)
C6—C2—C1—C54.5 (4)C6—C8—C9—C10178.91 (18)
C3—C2—C1—S10.4 (2)C1—S1—C4—C30.90 (19)
C6—C2—C1—S1179.10 (16)C7—C8—C6—O1129.0 (2)
C4—S1—C1—C20.71 (16)C9—C8—C6—O150.6 (2)
C4—S1—C1—C5174.72 (19)C7—C8—C6—C2110.1 (2)
C9—C8—C7—C11178.7 (2)C9—C8—C6—C270.2 (2)
C6—C8—C7—C111.0 (4)C1—C2—C6—O1141.08 (19)
C9—C8—C7—S20.6 (2)C3—C2—C6—O137.5 (3)
C6—C8—C7—S2179.07 (15)C1—C2—C6—C8101.1 (2)
O3—C11—C7—C8178.5 (2)C3—C2—C6—C880.3 (2)
O3—C11—C7—S20.5 (3)C8—C9—C10—S20.6 (3)
C10—S2—C7—C80.24 (17)C7—S2—C10—C90.21 (18)
C10—S2—C7—C11178.60 (18)S1—C4—C3—C20.9 (3)
C2—C1—C5—O24.2 (4)C1—C2—C3—C40.3 (3)
S1—C1—C5—O2178.5 (2)C6—C2—C3—C4178.46 (19)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.982.433.101 (3)125
C11—H11···O20.932.503.261 (3)139
C4—H4···O1i0.932.553.377 (3)149
C9—H9···O2ii0.932.573.458 (3)160
C10—H10···O3ii0.932.553.397 (3)152
O1—H1···O3iii0.822.032.825 (2)162
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) −x, y−1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.982.433.101 (3)125
C11—H11···O20.932.503.261 (3)139
C4—H4···O1i0.932.553.377 (3)149
C9—H9···O2ii0.932.573.458 (3)160
C10—H10···O3ii0.932.553.397 (3)152
O1—H1···O3iii0.822.032.825 (2)162
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) −x, y−1/2, −z+1/2.
references
References top

Basu, A. & Das, G. (2011). Inorg. Chim. Acta, 372, 394–399.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Guarín, S. A. P., Bourgeaux, M., Dufresne, S. & Skene, W. G. (2007). J. Org. Chem. 72, 2631–2643.

Herbivo, C., Comel, A., Kirsch, G. & Raposo, M. M. M. (2009). Tetrahedron, 65, 2079–2086.

Jain, P., Ferrence, G. M. & Lash, T. D. (2010). J. Org. Chem. 75, 6563–6573.

Raposo, M. M. M., Fonseca, A. M. C. & Kirsch, G. (2004). Tetrahedron, 60, 4071–4078.

Raposo, M. M. M. & Kirsch, G. (2003). Tetrahedron, 59, 4891–4899.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Su, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007c). Eur. J. Inorg. Chem. pp. 4168–4175.

Su, Q., Wu, Q.-L., Li, G.-H., Gao, W. & Mu, Y. (2007a). Acta Cryst. E63, o2052–o2053.

Su, Q., Wu, Q.-L., Li, G.-H., Liu, X.-M. & Mu, Y. (2007b). Polyhedron, 26, 5053–5060.

Su, Q., Wu, Q.-L., Ye, L. & Mu, Y. (2009). Acta Cryst. E65, o2537.