supplementary materials


nk2121 scheme

Acta Cryst. (2012). E68, o136-o137    [ doi:10.1107/S1600536811053098 ]

3'-[Hydroxy(4-oxo-4H-chromen-3-yl)methyl]-2-oxospiro[indoline-3,2'-pyrrolidine]-3'-carbonitrile

E. Govindan, K. SakthiMurugesan, A. SubbiahPandi, P. Yuvaraj and B. S. R. Reddy

Abstract top

In the title compound, C23H19N3O4, the pyran ring adopts a half-chair conformation, while the pyrrolidine (with a C atom as the flap atom) and the five-membered ring in the indoline (with a C atom as the flap atom) ring system adopt slight envelope conformations. The pyrrolidine ring makes dihedral angles of 83.3 (1) and 60.4 (1)° with the mean plane through all non-H atoms of the indoline and chromene ring systems, respectively. In the crystal, molecules are connected by two unique N-H...O and O-H...O hydrogen-bonding interactions, which form centrosymmetric patterns described by graph-set motifs R22(18) and R22(14). These two motifs combine to form a hydrogen-bonded chain which propagates in the a-axis direction. The crystal structure is also stablized by C-H...O interactions and by aromatic [pi]-[pi] stacking interactions between the pyran and benzene rings of neighbouring molecules [centroid-centroid distance = 3.755 (1) Å and slippage = 1.371 (2) Å].

Comment top

Pyrrolidine derivatives are used as norepinephrine reuptake inhibitors and 5-HT(1 A) partial agonists for treating neuropsychiatric disorders including depression and anxiety (Pettersson et al., 2011). These derivatives are used as alpha-mannosidase inhibitors and with antitumor activities against hematological and solid malignancies (Bello et al., 2010). In view of these importance, we have undertaken the crystal structure determination of the title compound, a pyrrolidine derivative,and the results are presented here.

Single crystal X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other pyrrolidine derivatives (Selvanayagam et al., 2011). The sum of the angles at N1 of the pyrrolidine ring [337.3 (2)°] is in accordance with sp3 hybridization. The pyran ring (O1/C1/C6–C9) adopts a half chair conformation with a local, non-crystallographic two fold rotation axis passing through the mid point of the [O1–C6] and [C9–C8] bonds; the puckering parameters Q, θ, φ (Cremer & Pople, 1975) and asymmetry parameter ΔC2[O1–C6](Nardelli, 1983) are 0.1074 (15) Å, 78.8 (8)°, 192.7 (9)° and 4.6 (2) Å, respectively. The pyrrolidine (N3/C11/C13/C14/C16) and five membered in the indoline (N2/C16—C19) rings adopt an envelope conformation with the C16 (displacement 5.8 (1) Å) and C17 (displacement 0.7 (2) Å) atoms as the flap atoms and with puckering parameters, q2 = 0.0888 (15) Å; φ2 = 326.7 (2)°; and q2 = 0.4459 (15) Å; φ2 = 38.6 (9)° respectively. The pyrrolidine ring makes dihedral angles of 83.3 (1)° and 60.4 (1)° with mean plane fitted through all non-H atoms of the indoline (N2/C16–C23) ring system and the chromen (O1/C1–C9) ring system, respectively.

In the crystal, unique N2–H2A···O2 (at x,y,z and -x,1 - y,1 - z) and O3–H3A···O4 (at x,y,z and 1 - x,1 - y,1 - z) hydrogen bonding interactions form a cyclic centrosymmetric patterns, with the motif R22(18) and R22(14). These combine to form a zigzag chains which propagates in the a axis direction (Table 1 and Fig. 2). The crystal packing is further stabilized by ππ stacking interactions between the rings Cg1 and Cg2 (at x,y,z and -x, 2 - y, 1 - z) with the centroid-centroid distances equal to 3.755 (1) Å and slippage = 1.371 (2) Å (Fig. 2; Cg1 and Cg2 are the centroids of pyran (O1/C1/C6–C9) and benzene (C1–C6) ring, respectively).

Related literature top

For general background to the biological use of pyrrolidine derivatives, see: Pettersson et al. (2011); Bello et al. (2010). For ring puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli (1983). For the structure of another pyrrolidine derivatie, see: Selvanayagam et al. (2011).

Experimental top

2-(Hydroxyl(4-oxo-4H-chromen-3-yl)methyl)acrylonitrile was synthesized by the Baylis-Hillman reaction of chromene-3-aldehyde, acrylonitrile and 0.1 equivalent of DABCO as a catalyst, in the presence of 1-methyl-2-pyrrolidinone (NMP) as a solvent. Baylis-Hillman adduct underwent smooth reaction with non-stabilized azomethine ylide generated from isatin and sarcosine by refluxing in acetonitrile. After that, a mixture of 2-(Hydroxyl(4-oxo-4H-chromen-3-yl)methyl)acrylonitrile (100 mg, 0.404 mmol), sarcosine(1.2eq), and isatin (1.2eq.) in acetonitrile(2 ml) was refluxed for 6–12 h. Completion of reaction was indicated by TLC, the solvent was then removed in vacuo and the crude product subjected to column chromatography (100–200 mesh) using hexane-ethyl acetate as eluent. Single crystal suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in hexane at room temperature.

Refinement top

H atoms were fixed geometrically (C—H = 0.93–0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for the methyl and OH groups.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of (I) showing N—H···O and O—H···O intermolecular hydrogen bonds showing R22(18) and R22(14) centrosymmetric dimers, respectively. [Symmetry codes: (i) -1 + x, y, z; (ii) -x, 1 - y, 1 - z; (iii) -1 + x, 1 - y, 1 - z; (iv) 1 + x, y, z; (v) 2 - x, 1 - y, 1 - z].
[Figure 3] Fig. 3. The ππ interactions shown as dotted lines in the title compound. Cg1 and Cg2 are the centroids of pyran (O1/C1/C6–C9) and benzene (C1–C6) ring, respectively. [Symmetry code: (i) -x, 2 - y, 1 - z]
3'-[Hydroxy(4-oxo-4H-chromen-3-yl)methyl]-2-oxospiro[indoline-3,2'- pyrrolidine]-3'-carbonitrile top
Crystal data top
C23H19N3O4Z = 2
Mr = 401.41F(000) = 420
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3483 (7) ÅCell parameters from 4841 reflections
b = 10.2256 (9) Åθ = 2.0–28.4°
c = 10.9080 (9) ŵ = 0.10 mm1
α = 71.832 (5)°T = 293 K
β = 88.309 (5)°Block, white
γ = 78.248 (5)°0.20 × 0.20 × 0.19 mm
V = 969.32 (14) Å3
Data collection top
Bruker APEXII CCD area detector
diffractometer
4841 independent reflections
Radiation source: fine-focus sealed tube3374 reflections with I > 2σ(I)
graphiteRint = 0.028
ω and φ scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.981, Tmax = 0.982k = 1313
17643 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.2158P]
where P = (Fo2 + 2Fc2)/3
4841 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C23H19N3O4γ = 78.248 (5)°
Mr = 401.41V = 969.32 (14) Å3
Triclinic, P1Z = 2
a = 9.3483 (7) ÅMo Kα radiation
b = 10.2256 (9) ŵ = 0.10 mm1
c = 10.9080 (9) ÅT = 293 K
α = 71.832 (5)°0.20 × 0.20 × 0.19 mm
β = 88.309 (5)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
4841 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3374 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.982Rint = 0.028
17643 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.22 e Å3
S = 1.02Δρmin = 0.21 e Å3
4841 reflectionsAbsolute structure: ?
273 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01655 (15)0.90996 (14)0.37494 (13)0.0379 (3)
C20.12747 (17)0.90527 (17)0.41086 (16)0.0507 (4)
H20.15150.82000.45710.061*
C30.2338 (2)1.0263 (2)0.37808 (19)0.0652 (5)
H30.32981.02270.40100.078*
C40.1974 (2)1.1539 (2)0.3107 (2)0.0701 (5)
H40.26981.23540.28970.084*
C50.0581 (2)1.16225 (17)0.27475 (17)0.0610 (5)
H50.03471.24830.23000.073*
C60.04833 (18)1.03947 (15)0.30641 (14)0.0449 (3)
C70.28974 (17)0.93517 (15)0.28421 (14)0.0448 (3)
H70.38110.94530.25110.054*
C80.27088 (15)0.80437 (14)0.34502 (12)0.0345 (3)
C90.13386 (15)0.78375 (14)0.40633 (12)0.0345 (3)
C100.39326 (14)0.67953 (14)0.35242 (12)0.0351 (3)
H100.38580.60330.43190.042*
C110.39211 (14)0.62424 (13)0.23496 (12)0.0324 (3)
C120.40376 (15)0.74112 (15)0.11646 (13)0.0377 (3)
C130.52387 (15)0.50169 (15)0.24145 (14)0.0411 (3)
H13A0.60750.53760.20030.049*
H13B0.55150.44630.33040.049*
C140.47078 (16)0.41335 (15)0.16957 (15)0.0442 (3)
H14A0.53330.40560.09860.053*
H14B0.46970.31970.22720.053*
C150.23476 (19)0.40250 (18)0.08659 (16)0.0541 (4)
H15A0.28150.36810.01990.081*
H15B0.13940.45800.05580.081*
H15C0.22560.32450.16100.081*
C160.26018 (14)0.56017 (13)0.21551 (11)0.0318 (3)
C170.22340 (15)0.45055 (14)0.34238 (12)0.0361 (3)
C180.00806 (15)0.59547 (14)0.25514 (13)0.0363 (3)
C190.11179 (14)0.65327 (14)0.17285 (12)0.0335 (3)
C200.06507 (16)0.77525 (15)0.07153 (13)0.0423 (3)
H200.13120.81410.01310.051*
C210.08275 (18)0.83888 (17)0.05857 (16)0.0515 (4)
H210.11490.92130.00880.062*
C220.18214 (17)0.78190 (18)0.14373 (17)0.0528 (4)
H220.27990.82740.13410.063*
C230.13801 (16)0.65743 (17)0.24364 (15)0.0470 (4)
H230.20470.61740.30060.056*
N10.41798 (16)0.83035 (15)0.02676 (13)0.0575 (4)
N30.32235 (12)0.48890 (12)0.12161 (10)0.0369 (3)
N20.07765 (13)0.47154 (12)0.34909 (11)0.0403 (3)
H2A0.03210.41580.40430.048*
O10.18680 (13)1.05308 (10)0.26729 (11)0.0532 (3)
O20.11877 (11)0.66834 (10)0.47960 (9)0.0429 (2)
O30.53230 (11)0.71535 (13)0.35228 (10)0.0496 (3)
H3A0.56220.69680.42690.074*
O40.31198 (11)0.35561 (11)0.41684 (10)0.0493 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (8)0.0409 (7)0.0372 (7)0.0030 (6)0.0020 (6)0.0189 (6)
C20.0414 (9)0.0560 (9)0.0579 (9)0.0047 (7)0.0053 (7)0.0260 (8)
C30.0431 (10)0.0754 (12)0.0775 (12)0.0055 (9)0.0012 (9)0.0356 (10)
C40.0646 (13)0.0602 (11)0.0767 (12)0.0199 (9)0.0136 (10)0.0281 (10)
C50.0707 (13)0.0436 (9)0.0613 (10)0.0050 (8)0.0045 (9)0.0160 (8)
C60.0520 (9)0.0413 (8)0.0410 (7)0.0027 (7)0.0008 (7)0.0165 (6)
C70.0455 (9)0.0446 (8)0.0467 (8)0.0126 (7)0.0116 (7)0.0164 (6)
C80.0342 (7)0.0403 (7)0.0323 (6)0.0093 (6)0.0042 (5)0.0154 (5)
C90.0376 (8)0.0378 (7)0.0325 (6)0.0091 (6)0.0048 (5)0.0166 (5)
C100.0297 (7)0.0438 (7)0.0327 (6)0.0089 (6)0.0032 (5)0.0126 (5)
C110.0269 (7)0.0380 (7)0.0326 (6)0.0074 (5)0.0047 (5)0.0115 (5)
C120.0348 (8)0.0444 (7)0.0386 (7)0.0127 (6)0.0084 (6)0.0172 (6)
C130.0285 (7)0.0478 (8)0.0459 (8)0.0025 (6)0.0049 (6)0.0169 (6)
C140.0399 (8)0.0427 (8)0.0497 (8)0.0022 (6)0.0080 (6)0.0186 (6)
C150.0573 (11)0.0598 (10)0.0600 (10)0.0207 (8)0.0081 (8)0.0346 (8)
C160.0301 (7)0.0357 (6)0.0299 (6)0.0070 (5)0.0047 (5)0.0107 (5)
C170.0373 (8)0.0382 (7)0.0343 (6)0.0106 (6)0.0047 (6)0.0121 (5)
C180.0316 (7)0.0435 (7)0.0381 (7)0.0100 (6)0.0032 (5)0.0177 (6)
C190.0291 (7)0.0401 (7)0.0341 (6)0.0080 (5)0.0017 (5)0.0152 (5)
C200.0400 (8)0.0462 (8)0.0389 (7)0.0083 (6)0.0015 (6)0.0108 (6)
C210.0446 (9)0.0515 (9)0.0534 (9)0.0006 (7)0.0133 (7)0.0145 (7)
C220.0314 (8)0.0645 (10)0.0673 (10)0.0005 (7)0.0066 (7)0.0325 (9)
C230.0298 (8)0.0627 (10)0.0569 (9)0.0133 (7)0.0075 (6)0.0289 (8)
N10.0658 (10)0.0599 (8)0.0469 (7)0.0260 (7)0.0109 (7)0.0093 (6)
N30.0354 (6)0.0406 (6)0.0387 (6)0.0081 (5)0.0067 (5)0.0183 (5)
N20.0363 (7)0.0448 (6)0.0405 (6)0.0161 (5)0.0109 (5)0.0104 (5)
O10.0591 (7)0.0378 (5)0.0605 (7)0.0115 (5)0.0125 (5)0.0122 (5)
O20.0431 (6)0.0395 (5)0.0455 (5)0.0111 (4)0.0140 (4)0.0120 (4)
O30.0338 (6)0.0765 (7)0.0456 (6)0.0193 (5)0.0021 (4)0.0244 (5)
O40.0472 (6)0.0489 (6)0.0416 (5)0.0078 (5)0.0029 (5)0.0006 (5)
Geometric parameters (Å, °) top
C1—C61.389 (2)C13—H13B0.9700
C1—C21.397 (2)C14—N31.4663 (18)
C1—C91.4682 (19)C14—H14A0.9700
C2—C31.376 (2)C14—H14B0.9700
C2—H20.9300C15—N31.4562 (18)
C3—C41.388 (3)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.361 (3)C15—H15C0.9600
C4—H40.9300C16—N31.4750 (16)
C5—C61.388 (2)C16—C191.5070 (18)
C5—H50.9300C16—C171.5658 (17)
C6—O11.3714 (19)C17—O41.2281 (16)
C7—C81.3401 (19)C17—N21.3389 (18)
C7—O11.3464 (18)C18—C231.375 (2)
C7—H70.9300C18—C191.3952 (18)
C8—C91.4506 (18)C18—N21.4047 (17)
C8—C101.5137 (19)C19—C201.3838 (19)
C9—O21.2346 (15)C20—C211.393 (2)
C10—O31.4202 (16)C20—H200.9300
C10—C111.5545 (17)C21—C221.378 (2)
C10—H100.9800C21—H210.9300
C11—C121.4806 (18)C22—C231.388 (2)
C11—C131.5536 (18)C22—H220.9300
C11—C161.5577 (18)C23—H230.9300
C12—N11.1370 (18)N2—H2A0.8600
C13—C141.525 (2)O3—H3A0.8200
C13—H13A0.9700
C6—C1—C2118.17 (14)N3—C14—H14A110.8
C6—C1—C9119.37 (13)C13—C14—H14A110.8
C2—C1—C9122.46 (13)N3—C14—H14B110.8
C3—C2—C1120.25 (16)C13—C14—H14B110.8
C3—C2—H2119.9H14A—C14—H14B108.8
C1—C2—H2119.9N3—C15—H15A109.5
C2—C3—C4119.87 (18)N3—C15—H15B109.5
C2—C3—H3120.1H15A—C15—H15B109.5
C4—C3—H3120.1N3—C15—H15C109.5
C5—C4—C3121.35 (17)H15A—C15—H15C109.5
C5—C4—H4119.3H15B—C15—H15C109.5
C3—C4—H4119.3N3—C16—C19113.02 (10)
C4—C5—C6118.53 (17)N3—C16—C1199.38 (10)
C4—C5—H5120.7C19—C16—C11120.44 (11)
C6—C5—H5120.7N3—C16—C17110.39 (10)
O1—C6—C5116.38 (14)C19—C16—C17101.30 (10)
O1—C6—C1121.81 (13)C11—C16—C17112.55 (10)
C5—C6—C1121.81 (16)O4—C17—N2126.16 (12)
C8—C7—O1125.13 (14)O4—C17—C16125.96 (12)
C8—C7—H7117.4N2—C17—C16107.66 (11)
O1—C7—H7117.4C23—C18—C19122.99 (13)
C7—C8—C9119.49 (13)C23—C18—N2127.48 (13)
C7—C8—C10120.12 (12)C19—C18—N2109.50 (12)
C9—C8—C10120.38 (11)C20—C19—C18118.68 (13)
O2—C9—C8121.90 (12)C20—C19—C16132.64 (12)
O2—C9—C1123.19 (12)C18—C19—C16108.66 (11)
C8—C9—C1114.91 (12)C19—C20—C21118.85 (14)
O3—C10—C8111.26 (11)C19—C20—H20120.6
O3—C10—C11104.83 (10)C21—C20—H20120.6
C8—C10—C11113.27 (10)C22—C21—C20121.21 (15)
O3—C10—H10109.1C22—C21—H21119.4
C8—C10—H10109.1C20—C21—H21119.4
C11—C10—H10109.1C21—C22—C23120.75 (15)
C12—C11—C13107.68 (11)C21—C22—H22119.6
C12—C11—C10107.99 (10)C23—C22—H22119.6
C13—C11—C10112.06 (10)C18—C23—C22117.45 (14)
C12—C11—C16108.36 (10)C18—C23—H23121.3
C13—C11—C16102.03 (10)C22—C23—H23121.3
C10—C11—C16118.22 (10)C15—N3—C14113.60 (12)
N1—C12—C11177.45 (15)C15—N3—C16116.64 (11)
C14—C13—C11105.22 (11)C14—N3—C16106.96 (10)
C14—C13—H13A110.7C17—N2—C18111.97 (11)
C11—C13—H13A110.7C17—N2—H2A124.0
C14—C13—H13B110.7C18—N2—H2A124.0
C11—C13—H13B110.7C7—O1—C6118.17 (11)
H13A—C13—H13B108.8C10—O3—H3A109.5
N3—C14—C13104.94 (11)
C6—C1—C2—C30.3 (2)C10—C11—C16—C1971.10 (15)
C9—C1—C2—C3179.39 (14)C12—C11—C16—C17171.44 (11)
C1—C2—C3—C40.9 (3)C13—C11—C16—C1775.12 (12)
C2—C3—C4—C50.7 (3)C10—C11—C16—C1748.25 (15)
C3—C4—C5—C60.3 (3)N3—C16—C17—O463.93 (17)
C4—C5—C6—O1179.54 (15)C19—C16—C17—O4176.09 (13)
C4—C5—C6—C11.0 (2)C11—C16—C17—O446.11 (18)
C2—C1—C6—O1179.85 (13)N3—C16—C17—N2110.91 (12)
C9—C1—C6—O10.2 (2)C19—C16—C17—N29.07 (13)
C2—C1—C6—C50.7 (2)C11—C16—C17—N2139.05 (11)
C9—C1—C6—C5179.63 (13)C23—C18—C19—C202.9 (2)
O1—C7—C8—C94.4 (2)N2—C18—C19—C20178.87 (11)
O1—C7—C8—C10177.16 (13)C23—C18—C19—C16178.50 (12)
C7—C8—C9—O2168.83 (13)N2—C18—C19—C160.27 (14)
C10—C8—C9—O29.61 (19)N3—C16—C19—C2065.67 (18)
C7—C8—C9—C110.87 (18)C11—C16—C19—C2051.41 (19)
C10—C8—C9—C1170.68 (11)C17—C16—C19—C20176.24 (14)
C6—C1—C9—O2171.04 (13)N3—C16—C19—C18112.66 (12)
C2—C1—C9—O29.3 (2)C11—C16—C19—C18130.27 (12)
C6—C1—C9—C88.66 (18)C17—C16—C19—C185.43 (13)
C2—C1—C9—C8171.01 (13)C18—C19—C20—C212.6 (2)
C7—C8—C10—O329.78 (17)C16—C19—C20—C21179.22 (14)
C9—C8—C10—O3148.65 (11)C19—C20—C21—C220.6 (2)
C7—C8—C10—C1188.01 (15)C20—C21—C22—C231.3 (2)
C9—C8—C10—C1193.56 (14)C19—C18—C23—C221.0 (2)
O3—C10—C11—C1263.12 (13)N2—C18—C23—C22178.92 (13)
C8—C10—C11—C1258.35 (14)C21—C22—C23—C181.1 (2)
O3—C10—C11—C1355.30 (13)C13—C14—N3—C15161.39 (12)
C8—C10—C11—C13176.78 (11)C13—C14—N3—C1631.23 (14)
O3—C10—C11—C16173.51 (11)C19—C16—N3—C1556.75 (15)
C8—C10—C11—C1665.02 (15)C11—C16—N3—C15174.33 (11)
C13—C11—C12—N149 (3)C17—C16—N3—C1555.90 (15)
C10—C11—C12—N172 (3)C19—C16—N3—C14174.84 (11)
C16—C11—C12—N1159 (3)C11—C16—N3—C1445.93 (12)
C12—C11—C13—C1489.80 (13)C17—C16—N3—C1472.51 (13)
C10—C11—C13—C14151.59 (11)O4—C17—N2—C18175.49 (13)
C16—C11—C13—C1424.15 (13)C16—C17—N2—C189.68 (15)
C11—C13—C14—N32.87 (14)C23—C18—N2—C17171.89 (13)
C12—C11—C16—N371.75 (12)C19—C18—N2—C176.24 (16)
C13—C11—C16—N341.69 (11)C8—C7—O1—C65.0 (2)
C10—C11—C16—N3165.06 (10)C5—C6—O1—C7173.25 (14)
C12—C11—C16—C1952.08 (15)C1—C6—O1—C77.3 (2)
C13—C11—C16—C19165.52 (11)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.012.8479 (14)164.
O3—H3A···O4ii0.821.972.7631 (14)164.
C23—H23···O3iii0.932.583.2761 (18)133.
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.012.8479 (14)164.
O3—H3A···O4ii0.821.972.7631 (14)164.
C23—H23···O3iii0.932.583.2761 (18)133.
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z.
Acknowledgements top

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

references
References top

Bello, C., Cea, M., Dal Bello, G., Garuti, A., Rocco, I., Cirmena, G., Moran, E., Nahimana, A., Duchosal, M. A., Fruscione, F., Pronzato, P., Grossi, F., Patrone, F., Ballestro, A., Dupuis, M., Sordat, B., Nencioni, A. & Vogel, P. (2010). Bioorg. Med. Chem. 18, 3320–3334.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.

Pettersson, M., Campbell, B. M., Dounary, A. B., Gray, D. L., Xie, L., O'Donnell, C. J., Stratman, N. C., Zoski, K., Drummond, E., Bora, G., Probert, A. & Whisman, T. (2011). Bioorg. Med. Chem. Lett. 21, 865–868.

Selvanayagam, S., Sridhar, B., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o629.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.