supplementary materials


pk2365 scheme

Acta Cryst. (2012). E68, o194-o195    [ doi:10.1107/S1600536811053980 ]

N-{3-[2-(4-Fluorophenoxy)ethyl]-2,4-dioxo-1,3-diazaspiro[4.5]decan-7-yl}-4-methoxybenzenesulfonamide

M. Vinduvahini, S. Jeyaseelan, J. Shylajakumari, H. D. Revanasiddappa and V. B. Devaru

Abstract top

In the title compound, C23H26FN3O6S, the two terminal aromatic rings form a dihedral angle of 49.26 (12)°. The cyclohexane ring adopts a chair conformation and the five-membered ring is essentially planar, with a maximum deviation from planarity of 0.0456 (19) Å. The dihedral angles between the five-membered ring and the methoxybenzene and fluorobenzene rings are 33.56 (11) and 81.94 (12)°, respectively. The crystal structure displays N-H...O hydrogen bonds as well as weak intermolecular C-H...O interactions.

Comment top

One of the challenges of medicinal chemistry is the promotion of structural diversity, which can be achieved by the attachment of pharmacophoric groups to a given molecular scaffold using combinatorial chemistry. An example of such a process includes di- and tri-substituted hydantoins, which have been widely used in biological screenings, resulting in numerous pharmaceutical applications (Cartwright et al., 2007; Collins, 2000; Warshakoon et al.,2006). Hydantion analogues have shown versatile therapeutic applications and some of them have been approved as drugs. For example, Fosphenytoin as a sodium channel antagonist is used for the treatment of epilepsy. Phenytoin has antiarrhythmic, anticonvulsant, and antineuralgic activities. Ethotoin and Mephenytoin both show anticonvulsant effects. Nilutamide is used in the treatment of prostate cancer (Kiselyov et al., 2006; Sakthivel & Cook, 2005; Eldrup et al., 2004; Bamford et al., 2005; Puerstinger et al., 2006).

The asymmetric unit of N-{3-[2-(4-fluorophenoxy)ethyl]-2,4-dioxo-1, 3-diazaspiro[4.5]dec-8-yl}-4-methoxy benzenesulfonamide, C23H26FN3O6S, contains just one molecule (Fig. 1). The two terminal benzene rings (C13···C18) and (C29···C34) form a dihedral angle of 49.26 (12)°. The cyclohexane (C19···C24) ring adopts a chair conformation, and the five-membered imidazolidine ring is essentially flat (max. deviation from mean plane = 0.0456 (19) Å). The dihedral angles between the five-membered ring and the methoxybenzene and fluorobenzene rings are 33.56 (11)° and 81.94 (12)°, respectively. The crystal structure displays intermolecular hydrogen bonds involving N10—H10···O5 and N11—H11···O6, as well as weak intermolecular C20—H20A···O4 and C31—H31···O4 interactions (Table 1). The packing of the molecules is depicted in Fig. 2.

Related literature top

For the biological activity of related compounds, see: Cartwright et al. (2007); Collins (2000); Warshakoon et al. (2006) and for their pharmaceutical activity, see: Kiselyov et al. (2006); Sakthivel & Cook (2005); Eldrup et al. (2004); Bamford et al. (2005); Puerstinger et al. (2006).

Experimental top

A mixture of tert-butyl (4-oxocyclohexyl)carbamate (2 g, 9.37 mmol) and ammonium carbonate (1.08 g, 11.2 mmol) were taken in ethanol and water, respectively. A solution of sodium cyanide (2 g, 9.37 mmol) in water was added dropwise and the reaction mixture was stirred at RT for 24 hrs. A mixture of anhydrous potassium carbonate (1.28 g, 9.31 mmol) and 1-(2-bromoethoxy)-4-fluorobenzene (1.53 g, 6.9 mmol) in DMF (20 ml) was refluxed, and the solid was filtered, washed with water and dried in vacuum to give hydantoin. The tert-butyl dicarbonate (BOC) was de-protected using dioxane-HCl and it was basified to give the free amine. A mixture of the product (0.2 g, 0.622 mmol), triethylamine (0.075 g, 0.74 mmol) and sulfonyl chloride (0.115 g, 0.56 mmol) in dichloromethane (10 ml) was stirred at room temperature. After completion of the reaction (checked by TLC), the result was concentrated in vacuum to give the title compound (163 mg, 54%), which was recrystallized using 1:1 hexane: ethyl acetate as solvent.

Refinement top

All H atoms were positioned at calculated positions with N—H = 0.86°, C—H = 0.98° for methine, C—H = 0.97° for methylene H, C—H = 0.93° for aromatic H and C—H = 0.96° for methyl H and refined a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C,N) for the other hydrogen atoms.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids drawn at the 30% probability level. The H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing of the molecules in the title compound, viewed down the a axis.
N-{3-[2-(4-Fluorophenoxy)ethyl]-2,4-dioxo-1,3-diazaspiro[4.5]decan- 7-yl}-4-methoxybenzenesulfonamide top
Crystal data top
C23H26FN3O6SF(000) = 1032
Mr = 491.53Dx = 1.352 Mg m3
Monoclinic, P21/cMelting point: 454 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.926 (5) ÅCell parameters from 4240 reflections
b = 11.025 (5) Åθ = 2.2–25.0°
c = 18.508 (5) ŵ = 0.19 mm1
β = 97.271 (5)°T = 293 K
V = 2413.9 (16) Å3Prism, colourless
Z = 40.20 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4240 independent reflections
Radiation source: fine-focus sealed tube3435 reflections with I > 2σ(I)
graphiteRint = 0.035
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 1310
Tmin = 0.771, Tmax = 1.000l = 2022
21931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.7995P]
where P = (Fo2 + 2Fc2)/3
4240 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C23H26FN3O6SV = 2413.9 (16) Å3
Mr = 491.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.926 (5) ŵ = 0.19 mm1
b = 11.025 (5) ÅT = 293 K
c = 18.508 (5) Å0.20 × 0.15 × 0.12 mm
β = 97.271 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4240 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
3435 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 1.000Rint = 0.035
21931 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.121Δρmax = 0.48 e Å3
S = 1.04Δρmin = 0.50 e Å3
4240 reflectionsAbsolute structure: ?
307 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Colourless solid: Yield: 103 mg, 67%); mp: 454k; IR cm-1 (KBr) 3359 (N—H), 1340 (S=O); Anal. Calcd For C23H26FN3O6S: C, 56.20; H, 5.33; N, 8.55%, Found, C, 55.09; H, 5.35; N, 8.45%.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47387 (4)0.20854 (4)0.01227 (2)0.03209 (16)
F21.00980 (18)0.1496 (2)0.04785 (12)0.1244 (9)
O30.80071 (13)0.03367 (15)0.26846 (9)0.0512 (4)
O40.70270 (13)0.38222 (13)0.31425 (10)0.0552 (5)
O50.56248 (13)0.00010 (12)0.32549 (8)0.0412 (4)
O60.48854 (13)0.12205 (13)0.06840 (7)0.0426 (4)
O70.40333 (13)0.31161 (13)0.02950 (8)0.0434 (4)
O80.91812 (15)0.39441 (16)0.11131 (11)0.0691 (6)
N90.65657 (14)0.18207 (14)0.33157 (9)0.0351 (4)
N100.53633 (14)0.29687 (14)0.26198 (9)0.0354 (4)
H100.50360.36040.24230.042*
N110.42293 (14)0.13132 (14)0.04977 (8)0.0327 (4)
H110.40170.05750.04140.039*
C121.0152 (2)0.3203 (3)0.1158 (2)0.0834 (10)
H12A1.08000.36610.13630.125*
H12B1.02610.29300.06790.125*
H12C1.00560.25160.14620.125*
C130.81799 (19)0.3448 (2)0.08321 (13)0.0463 (5)
C140.7260 (2)0.4222 (2)0.07640 (15)0.0580 (7)
H140.73530.50240.09160.070*
C150.6212 (2)0.3816 (2)0.04736 (13)0.0473 (6)
H150.55950.43390.04310.057*
C160.60774 (17)0.26262 (18)0.02452 (10)0.0338 (4)
C170.69896 (18)0.18514 (18)0.03223 (12)0.0399 (5)
H170.68940.10480.01740.048*
C180.80392 (19)0.22515 (19)0.06158 (12)0.0442 (5)
H180.86510.17220.06690.053*
C190.41262 (16)0.18727 (16)0.12110 (10)0.0287 (4)
H190.43330.27310.11920.034*
C200.29275 (16)0.17830 (19)0.13882 (11)0.0362 (5)
H20A0.26910.09410.13690.043*
H20B0.24270.22300.10290.043*
C210.28410 (17)0.2295 (2)0.21439 (11)0.0395 (5)
H21A0.29940.31590.21440.047*
H21B0.20770.21820.22600.047*
C220.36675 (17)0.16844 (19)0.27258 (11)0.0361 (5)
H22A0.36240.20740.31910.043*
H22B0.34560.08400.27690.043*
C230.48732 (16)0.17553 (16)0.25459 (10)0.0289 (4)
C240.49523 (16)0.12453 (17)0.17834 (10)0.0286 (4)
H24A0.57160.13530.16650.034*
H24B0.47920.03830.17800.034*
C250.57017 (17)0.10571 (17)0.30816 (10)0.0311 (4)
C260.63708 (18)0.29892 (17)0.30243 (11)0.0367 (5)
C270.76450 (18)0.1454 (2)0.37032 (12)0.0441 (5)
H27A0.75440.07240.39810.053*
H27B0.79260.20870.40430.053*
C280.84957 (19)0.1217 (2)0.31867 (13)0.0458 (6)
H28A0.86550.19570.29350.055*
H28B0.91960.09160.34490.055*
C290.85919 (18)0.00587 (18)0.21384 (12)0.0396 (5)
C300.97395 (19)0.0047 (2)0.21463 (14)0.0531 (6)
H301.01720.04420.25290.064*
C311.0247 (2)0.0442 (3)0.15802 (17)0.0681 (8)
H311.10240.03830.15760.082*
C320.9586 (3)0.1007 (3)0.10314 (16)0.0697 (8)
C330.8452 (2)0.1123 (3)0.10093 (14)0.0603 (7)
H330.80260.15200.06250.072*
C340.79498 (19)0.0639 (2)0.15697 (12)0.0445 (5)
H340.71710.07010.15660.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0411 (3)0.0306 (3)0.0236 (3)0.0057 (2)0.0004 (2)0.00054 (19)
F20.0994 (16)0.175 (2)0.1085 (16)0.0153 (15)0.0523 (13)0.0535 (16)
O30.0437 (9)0.0566 (10)0.0553 (10)0.0118 (7)0.0141 (8)0.0204 (8)
O40.0466 (10)0.0331 (8)0.0815 (12)0.0075 (7)0.0092 (8)0.0083 (8)
O50.0548 (9)0.0280 (8)0.0388 (8)0.0002 (6)0.0021 (7)0.0041 (6)
O60.0604 (10)0.0421 (8)0.0248 (7)0.0048 (7)0.0039 (7)0.0062 (6)
O70.0495 (9)0.0380 (8)0.0398 (8)0.0113 (7)0.0049 (7)0.0062 (6)
O80.0452 (10)0.0561 (11)0.1003 (15)0.0045 (8)0.0131 (10)0.0252 (10)
N90.0392 (10)0.0283 (8)0.0354 (9)0.0025 (7)0.0046 (8)0.0064 (7)
N100.0425 (10)0.0230 (8)0.0383 (10)0.0022 (7)0.0043 (8)0.0016 (7)
N110.0451 (10)0.0271 (8)0.0256 (8)0.0028 (7)0.0033 (7)0.0059 (6)
C120.0443 (16)0.0728 (19)0.126 (3)0.0066 (14)0.0180 (17)0.0291 (19)
C130.0416 (13)0.0453 (12)0.0501 (14)0.0021 (10)0.0018 (10)0.0093 (11)
C140.0518 (15)0.0392 (12)0.0798 (18)0.0044 (11)0.0039 (13)0.0195 (12)
C150.0448 (13)0.0353 (12)0.0599 (15)0.0106 (10)0.0008 (11)0.0076 (10)
C160.0409 (11)0.0325 (10)0.0283 (10)0.0043 (9)0.0065 (9)0.0020 (8)
C170.0442 (12)0.0285 (10)0.0469 (13)0.0041 (9)0.0056 (10)0.0014 (9)
C180.0410 (12)0.0382 (12)0.0526 (14)0.0107 (10)0.0034 (10)0.0002 (10)
C190.0367 (11)0.0249 (9)0.0242 (9)0.0002 (8)0.0022 (8)0.0033 (7)
C200.0321 (11)0.0398 (11)0.0356 (11)0.0041 (9)0.0001 (9)0.0002 (9)
C210.0332 (11)0.0441 (12)0.0424 (12)0.0063 (9)0.0088 (9)0.0015 (10)
C220.0404 (12)0.0389 (11)0.0304 (10)0.0021 (9)0.0093 (9)0.0013 (9)
C230.0355 (11)0.0234 (9)0.0273 (10)0.0003 (8)0.0023 (8)0.0019 (7)
C240.0305 (10)0.0274 (9)0.0276 (10)0.0017 (8)0.0028 (8)0.0023 (7)
C250.0402 (11)0.0288 (10)0.0242 (10)0.0021 (8)0.0034 (8)0.0042 (8)
C260.0397 (12)0.0286 (10)0.0408 (12)0.0019 (9)0.0013 (9)0.0073 (8)
C270.0452 (13)0.0442 (12)0.0389 (12)0.0065 (10)0.0103 (10)0.0079 (10)
C280.0397 (12)0.0417 (12)0.0533 (14)0.0008 (10)0.0052 (10)0.0076 (10)
C290.0412 (12)0.0351 (11)0.0434 (12)0.0014 (9)0.0086 (10)0.0045 (9)
C300.0383 (13)0.0600 (15)0.0608 (15)0.0006 (11)0.0054 (11)0.0004 (12)
C310.0419 (14)0.082 (2)0.084 (2)0.0089 (14)0.0229 (14)0.0029 (17)
C320.0637 (18)0.086 (2)0.0642 (18)0.0148 (15)0.0266 (15)0.0129 (15)
C330.0612 (17)0.0694 (17)0.0505 (15)0.0038 (13)0.0083 (13)0.0111 (13)
C340.0404 (12)0.0468 (13)0.0464 (13)0.0008 (10)0.0065 (10)0.0011 (10)
Geometric parameters (Å, °) top
S1—O71.4258 (15)C19—C201.510 (3)
S1—O61.4370 (15)C19—C241.519 (3)
S1—N111.6092 (17)C19—H190.9800
S1—C161.759 (2)C20—C211.524 (3)
F2—C321.367 (3)C20—H20A0.9700
O3—C291.370 (3)C20—H20B0.9700
O3—C281.417 (3)C21—C221.522 (3)
O4—C261.209 (2)C21—H21A0.9700
O5—C251.214 (2)C21—H21B0.9700
O8—C131.356 (3)C22—C231.518 (3)
O8—C121.411 (3)C22—H22A0.9700
N9—C251.358 (3)C22—H22B0.9700
N9—C261.405 (3)C23—C251.518 (3)
N9—C271.449 (3)C23—C241.533 (3)
N10—C261.333 (3)C24—H24A0.9700
N10—C231.459 (2)C24—H24B0.9700
N10—H100.8600C27—C281.502 (3)
N11—C191.476 (2)C27—H27A0.9700
N11—H110.8600C27—H27B0.9700
C12—H12A0.9600C28—H28A0.9700
C12—H12B0.9600C28—H28B0.9700
C12—H12C0.9600C29—C301.372 (3)
C13—C181.383 (3)C29—C341.378 (3)
C13—C141.383 (3)C30—C311.384 (4)
C14—C151.372 (3)C30—H300.9300
C14—H140.9300C31—C321.356 (4)
C15—C161.382 (3)C31—H310.9300
C15—H150.9300C32—C331.354 (4)
C16—C171.376 (3)C33—C341.370 (3)
C17—C181.373 (3)C33—H330.9300
C17—H170.9300C34—H340.9300
C18—H180.9300
O7—S1—O6119.32 (9)C20—C21—H21B109.2
O7—S1—N11108.41 (9)H21A—C21—H21B107.9
O6—S1—N11104.85 (9)C23—C22—C21111.63 (16)
O7—S1—C16107.30 (10)C23—C22—H22A109.3
O6—S1—C16108.50 (10)C21—C22—H22A109.3
N11—S1—C16108.01 (9)C23—C22—H22B109.3
C29—O3—C28119.76 (17)C21—C22—H22B109.3
C13—O8—C12117.8 (2)H22A—C22—H22B108.0
C25—N9—C26111.34 (16)N10—C23—C25100.59 (15)
C25—N9—C27125.11 (17)N10—C23—C22113.94 (16)
C26—N9—C27122.64 (18)C25—C23—C22112.77 (16)
C26—N10—C23112.96 (15)N10—C23—C24110.60 (15)
C26—N10—H10123.5C25—C23—C24107.72 (15)
C23—N10—H10123.5C22—C23—C24110.69 (16)
C19—N11—S1119.92 (13)C19—C24—C23111.41 (15)
C19—N11—H11120.0C19—C24—H24A109.3
S1—N11—H11120.0C23—C24—H24A109.3
O8—C12—H12A109.5C19—C24—H24B109.3
O8—C12—H12B109.5C23—C24—H24B109.3
H12A—C12—H12B109.5H24A—C24—H24B108.0
O8—C12—H12C109.5O5—C25—N9126.13 (18)
H12A—C12—H12C109.5O5—C25—C23126.45 (18)
H12B—C12—H12C109.5N9—C25—C23107.39 (16)
O8—C13—C18124.4 (2)O4—C26—N10129.17 (19)
O8—C13—C14115.9 (2)O4—C26—N9123.75 (19)
C18—C13—C14119.8 (2)N10—C26—N9107.08 (17)
C15—C14—C13120.5 (2)N9—C27—C28111.25 (18)
C15—C14—H14119.7N9—C27—H27A109.4
C13—C14—H14119.7C28—C27—H27A109.4
C14—C15—C16119.6 (2)N9—C27—H27B109.4
C14—C15—H15120.2C28—C27—H27B109.4
C16—C15—H15120.2H27A—C27—H27B108.0
C17—C16—C15119.9 (2)O3—C28—C27106.35 (18)
C17—C16—S1119.78 (16)O3—C28—H28A110.5
C15—C16—S1120.32 (16)C27—C28—H28A110.5
C18—C17—C16120.7 (2)O3—C28—H28B110.5
C18—C17—H17119.6C27—C28—H28B110.5
C16—C17—H17119.6H28A—C28—H28B108.7
C17—C18—C13119.5 (2)O3—C29—C30124.4 (2)
C17—C18—H18120.3O3—C29—C34115.19 (19)
C13—C18—H18120.3C30—C29—C34120.3 (2)
N11—C19—C20110.81 (15)C29—C30—C31119.4 (2)
N11—C19—C24108.26 (15)C29—C30—H30120.3
C20—C19—C24111.53 (16)C31—C30—H30120.3
N11—C19—H19108.7C32—C31—C30118.5 (2)
C20—C19—H19108.7C32—C31—H31120.7
C24—C19—H19108.7C30—C31—H31120.7
C19—C20—C21110.55 (16)C33—C32—C31123.3 (2)
C19—C20—H20A109.5C33—C32—F2118.6 (3)
C21—C20—H20A109.5C31—C32—F2118.0 (3)
C19—C20—H20B109.5C32—C33—C34118.1 (3)
C21—C20—H20B109.5C32—C33—H33121.0
H20A—C20—H20B108.1C34—C33—H33121.0
C22—C21—C20111.87 (17)C33—C34—C29120.3 (2)
C22—C21—H21A109.2C33—C34—H34119.8
C20—C21—H21A109.2C29—C34—H34119.8
C22—C21—H21B109.2
O7—S1—N11—C1960.56 (16)N10—C23—C24—C1972.4 (2)
O6—S1—N11—C19170.97 (14)C25—C23—C24—C19178.57 (15)
C16—S1—N11—C1955.41 (16)C22—C23—C24—C1954.9 (2)
C12—O8—C13—C182.9 (4)C26—N9—C25—O5178.3 (2)
C12—O8—C13—C14176.9 (3)C27—N9—C25—O512.4 (3)
O8—C13—C14—C15178.8 (2)C26—N9—C25—C233.5 (2)
C18—C13—C14—C151.0 (4)C27—N9—C25—C23165.77 (18)
C13—C14—C15—C160.3 (4)N10—C23—C25—O5175.12 (19)
C14—C15—C16—C171.2 (3)C22—C23—C25—O553.4 (3)
C14—C15—C16—S1179.56 (19)C24—C23—C25—O569.1 (2)
O7—S1—C16—C17166.69 (16)N10—C23—C25—N96.72 (19)
O6—S1—C16—C1736.52 (19)C22—C23—C25—N9128.47 (17)
N11—S1—C16—C1776.62 (18)C24—C23—C25—N9109.10 (17)
O7—S1—C16—C1514.9 (2)C23—N10—C26—O4173.8 (2)
O6—S1—C16—C15145.07 (18)C23—N10—C26—N96.5 (2)
N11—S1—C16—C15101.79 (19)C25—N9—C26—O4178.7 (2)
C15—C16—C17—C180.9 (3)C27—N9—C26—O49.1 (3)
S1—C16—C17—C18179.27 (17)C25—N9—C26—N101.6 (2)
C16—C17—C18—C130.4 (3)C27—N9—C26—N10171.25 (17)
O8—C13—C18—C17178.5 (2)C25—N9—C27—C2892.0 (2)
C14—C13—C18—C171.3 (4)C26—N9—C27—C2876.1 (2)
S1—N11—C19—C20125.10 (15)C29—O3—C28—C27179.60 (18)
S1—N11—C19—C24112.29 (16)N9—C27—C28—O355.9 (2)
N11—C19—C20—C21176.69 (16)C28—O3—C29—C3020.0 (3)
C24—C19—C20—C2156.0 (2)C28—O3—C29—C34162.7 (2)
C19—C20—C21—C2255.3 (2)O3—C29—C30—C31176.7 (2)
C20—C21—C22—C2354.9 (2)C34—C29—C30—C310.4 (4)
C26—N10—C23—C258.2 (2)C29—C30—C31—C320.3 (4)
C26—N10—C23—C22129.10 (19)C30—C31—C32—C330.2 (5)
C26—N10—C23—C24105.47 (19)C30—C31—C32—F2179.4 (3)
C21—C22—C23—N1071.3 (2)C31—C32—C33—C340.3 (5)
C21—C22—C23—C25174.89 (16)F2—C32—C33—C34179.4 (3)
C21—C22—C23—C2454.1 (2)C32—C33—C34—C290.4 (4)
N11—C19—C24—C23178.48 (15)O3—C29—C34—C33176.9 (2)
C20—C19—C24—C2356.3 (2)C30—C29—C34—C330.5 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O5i0.862.082.924 (2)168.
N11—H11···O6ii0.862.392.991 (3)127.
C20—H20A···O4iii0.972.513.377 (3)148.
C31—H31···O4iv0.932.483.327 (3)152.
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N10—H10···O5i0.862.082.924 (2)168.
N11—H11···O6ii0.862.392.991 (3)127.
C20—H20A···O4iii0.972.513.377 (3)148.
C31—H31···O4iv0.932.483.327 (3)152.
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2.
Acknowledgements top

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his help with the data collection.

references
References top

Bamford, M. J., et al. (2005). Bioorg. Med. Chem. Lett. 15, 3402–3406.

Cartwright, M. W., Sandford, G., Bousbaa, J., Yufit, D. S., Howard, J. A. K., Christopher, J. A. & Miller, D. D. (2007). Tetrahedron, 63, 7027–7035.

Collins, I. (2000). J. Chem. Soc. Perkin Trans. 1 pp. 2845–2861.

Eldrup, A. B., et al. (2004). J. Med. Chem. 47, 5284–5297.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Kiselyov, A. S., Semenova, M., Semenov, V. V. & Piatnitski, E. (2006). Bioorg. Med. Chem. Lett. 16, 1726–1730.

Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED . Oxford Diffraction Ltd, Yarnton, England.

Puerstinger, G., Paeshuyse, J., Herdewijn, P., Rozenski, J., Clercq, D. & Neyts, J. (2006). Bioorg. Med. Chem. Lett. 16, 5345–5349.

Sakthivel, K. & Cook, P. D. (2005). Tetrahedron Lett. 46, 3883–3887.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Warshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Sheville, J., Renock, S., Xu, K., Pokross, M., Evdokimov, A. G., Walter, R. & Mekel, M. (2006). Bioorg. Med. Chem. Lett. 16, 5598–5601.